This is page 333
Printer: Opaque this

20

Logic Regression - Methods
and Software

Ingo Ruczinski, Charles Kooperberg and
Michael LeBlanc!

Summary

Logic Regression is an adaptive regression methodology that
constructs predictors as Boolean combinations of binary covariates.
This method, introduced by Ruczinski, Kooperberg, and LeBlanc
[5] is particularly useful for problems where most covariates are
binary, and the interactions between those predictors is of main inter-
est. Here, we briefly review the methodology, describe the publicly
available software, and give an example. The software is currently
available from http://bear.fhcrc.org/~ingor/logic.

20.1 The Logic Regression Methodology

In most regression problems a model is developed that relates the main ef-
fects (the predictors or transformations thereof) to the response. Although
interactions between predictors are sometimes considered as well, those
interactions are typically kept simple (two- to three-way interactions at
most). But often, especially when all predictors are binary, the interaction
between many predictors is what is associated with differences in response.
This issue arises, for example, in the analysis of SNP microarray data or
in some data mining problems. Given a set of binary predictors X, we
try to create new predictors for the response by considering combinations
of those binary predictors. For example, if the response is binary as well

Tngo Ruczinski is at the Department of Biostatistics, Bloomberg School of Public
Health, Johns Hopkins University, Baltimore, MD 21205-2179; Charles Kooperberg and
Michael LeBlanc are at the Division of Public Health Sciences, Fred Hutchinson Cancer
Research Center, Seattle, WA 98109-1024 (E-mail: clk@fhcrc.org, mikel@swog.fhcre.org).
This research was supported in part by National Institutes of Health grants CA74841
and CA53996.

334 Ruczinski, Kooperberg and LeBlanc

(which is not required in general), we attempt to find decision rules such
as “if X1, X5, X3 and X, are true”, or “X5 or Xg but not X; are true”,
then the response is more likely to be in class 0. In other words, we try to
find Boolean statements involving the binary predictors that enhance the
prediction for the response. Formally: let X7, ..., X} be binary predictors,
and let Y be a response variable. We try to fit regression models of the form
g(E[Y]) =bo+biL1 +---+b,L,, where L; is a Boolean expression of the
predictors X, such as L; = [(X2AX{)V X7]. The above framework includes
many forms of regression, such as linear regression (g(E[Y]) = E[Y]) and
logistic regression (g(E[Y]) = log(E[Y]/(1—E[Y]))). For every model type,
we define a score function that reflects the “quality” of the model under
consideration. For linear regression the score could be the residual sum of
squares and for logistic regression it could be the binomial deviance. We
try to find the Boolean expressions in the regression model that minimize
the scoring function associated with this model type, estimating the pa-
rameters b; simultaneously with the Boolean expressions L;. In the Logic
Regression framework any type of model can be considered, as long as a
scoring function can be defined. For example, we also implemented the Cox
proportional hazards model, using the partial likelihood as the score.

There are some similarities between Logic Regression and some of the so
called rule induction methods developed in the field of Machine Learning.
Logic Regression differs from all methods that we are aware of in one or
both of two important aspects: (i) the Logic Regression methodology places
no restrictions on the form of the logic expressions L;, and (ii) the Logic
Regression methodology is not specifically designed for one particular prob-
lem (in machine learning often classification) but works with any scoring
function. In our experience it performs better with continuous measures,
such as log-likelihoods, than with discrete measures, such as misclassifica-
tion. We refer to Ruczinski et al. [5] for a comparison of Logic Regression
and machine learning methods.

Any Boolean statement can be represented as a binary tree (called Logic
Tree), the variables being the leaves of the tree and the logic operators
(V, A) as the other knots (see [5] for details; Figure 20.3 later in this chapter
displays Logic Trees). On the set of trees we define a move set by a collection
of standard operations: alternating leaves, changing operators, splitting and
deleting leaves, and growing and pruning the trees. The terminology used
is similar to the terminology introduced by Breiman et al. [1]. Ruczinski
et al. [5] also provide a comparison between CART and Logic models.
Since the number of possible Logic Models for a given set of predictors
can be very large, we rely on search algorithms to help us find the best
scoring models. We implemented two algorithms: a greedy (stepwise) and
a simulated annealing algorithm. While the greedy algorithm is very fast,
it does not always find a good scoring model. Our preferred algorithm is
the simulated annealing algorithm, which usually does find good scoring
models, but is computationally more expensive.

20. Logic Regression - Methods and Software 335

As for many adaptive regression methodologies, the best scoring model
often over-fits the data, and model selection is needed. We implemented
several methods for model selection, using randomization tests and cross-
validation. A detailed introduction to Logic Regression can be found in
Ruczinski et al. [5]. See Kooperberg et al. [3] for an application of said
methodology to single nucleotide polymorphism (SNP) data.

20.2 The Logic Regression Software

The Logic Regression program is a stand-alone program zlogic written
in Fortran 90 that can be downloaded from http://bear.fhcrc.org/
~ingor/logic. zlogic can be used to fit one logic regression model, to fit
logic regression models of pre-specified sizes, to carry out cross-validation,
or to do various randomization tests. Each application requires an input
file, which can be edited manually or be generated from one of the online
available menus. The results of zlogic are a number of ASCII files. These can
be directly used as input to several S-Plus functions to generate graphical
representations of the output.

Currently the Logic Regression methodology has scoring functions for
linear regression (residual sum of squares), logistic regression (binomial de-
viance), classification (misclassification), and proportional hazards models
(partial likelihood). A feature of the Logic Regression methodology is that
it is easy to include and use ones own scoring function if that is desired.
Online help is available from the website.

20.2.1 Running the Software

In the following sections we will focus on the current version of the program.
A number of extensions of the methodology are planned for the near future.
In Figure 20.2 is the online menu that one obtains after selecting how to
run the program on the previous (main) menu. It displays the currently
available features of the Logic Regression software.

There are currently five versions of the Logic Regression program, avail-
able on the web site. They are listed in Figure20.2. For each of these versions
a menu is available, which guides the user through the selection of the
various options. We now discuss the various versions of the program.

20.2.2 Find the best scoring model of any size

To select a good scoring Logic Regression model, we use a simulated an-
nealing (see, for example, Otten and van Ginneken [4] and van Laarhoven
and Aarts [6]) search algorithm. In general, simulated annealing operates
on a state space S, which is a collection of individual states, representing

336 Ruczinski, Kooperberg and LeBlanc

Logic Regression

Logic regression is a (generalized) regression methodology that is primarily applied when most of the
covariatesin the data to be analyzed are binary. The goal of logic regression isto find predictors that are
Boolean (logical) combinations of the original predictors. For more information follow the link basic
info about the methodology below.

On this page you can download the software for the logic regression algorithm and find the basic info
you need to run the software. Please click on the appropriate link to find out more.

basic info about the methodology
basic info about the available software
download the softwar e

how to run the program

write your own scoring functions
description of the output format

an exampleto check out

sample programs

The current version of the codeis 0.1.3 dated July 17, 2001 (changel og).

The logic regression methodology was devel oped by Ingo Ruczinski, Charles Kooperberg, and Michael LeBlanc at the Fred
Hutchinson Cancer Research Center in Sesttle. The copyright of the logic regression code is owned by Ingo Ruczinski,
Charles Kooperberg, and Michael LeBlanc. Y ou are free to use the software, for non-commercial purposes only, if:

(1) Copyright notices are not removed.

(2) Publications using logic regression refer to: Ruczinski |, Kooperberg C, LeBlanc ML (2001), Logic Regression,
manuscript. or Kooperberg C, Ruczinski |, LeBlanc ML, Hsu L (2001), Sequence Analysis using Logic Regression, Genetic
Epidemiology, to appear.

For questions please contact Ingo Ruczinski or Charles K ooperberg.

Figure 20.1. The Logic Regression menu, as of October 2001, available from
http://bear.fhcrc.org/~ingor/logic/ Online, you can click any of the links,
indicated by the bold face fonts, to find out more about that topic.

a configuration of the problem under investigation. The states are related
by a neighborhood system, and the set of neighboring pairs in S defines
a substructure M in S x S. The elements in M are called moves. Two
states s,s’ are called adjacent, if they can be reached by a single move
(i. e. (s,s') € M). Similarly, (s,s') € M* are said to be connected via a set
of k moves. In our application, the state space is finite. The basic idea of the
annealing algorithm is: given the current state, pick a move according to a
selection scheme from the set, of permissible moves, which leads to yielding
a new state. Compare the scores of the old and the new state. If the score

20. Logic Regression - Methods and Software 337

Logic Regression - running xlogic

To tune the program you need an input file specifying all options. Such an input fileis most easily
generated by one of these scripts:

find the best scoring model of any size

find the best scoring modelsfor various sizes

carry out cross-validation for model selection
carry out arandomization test to check for signal in
the data

carry out arandomization test for model selection

Y ou can now run the code as
% xlogic < inputfile
If you want to edit input files yourself, the format of the input files is described here.

Output is (by default) written in the Scratch subdirectory of the directory in which xlogic is.
Output formats are described here and there are sample programs here .

For questions please contact Ingo Ruczinski or Charles Kooperberg.

Figure 20.2. The features of the software as of October 2001, available
from http://bear.fhcrc.org/~ingor/logic/running/running.html Online,
you can click any of the links, indicated by the bold face fonts, to get the templates
for the input file needed to run the program.

of the new state is better than the score of the old state, accept the move.
If the score of the new state is not better than the score of the old state,
accept the move with a certain probability. This acceptance probability de-
pends on the difference of the scores of the two states under consideration
and a parameter that reflects at which point in time the annealing chain is
(this parameter is usually referred to as the temperature). For any pair of
scores, this probability decreases during the algorithm. For infinitely long
algorithms with slowly decreasing temperatures it can be established that
the best state is reached. However, even when that is not the case, this
algorithm generally leads to good-scoring states.

In our case, a state is a Logic Tree. Given the current tree, we randomly
pick, following a pre-determined distribution, a candidate from the move
set, for this tree. We re-fit the parameters for the new model, and determine
its score, which we then compare to the score of the previous state (Logic
model), and repeat the process. There are various possibilities how to im-
plement the annealing algorithm and fit the Logic models. This requires,

338 Ruczinski, Kooperberg and LeBlanc

or

Figure 20.3. Results of letting zlogic find the best model of any size with two
logic trees on the simulated data set

for computational reasons, that we pre-select the number ¢ of trees. Unless
we have an idea of how many trees we maximally want to fit, it may not be
clear a priori what this number should be. We generally pick larger than
necessary t and trim the model down if needed. Our simulated annealing
algorithm has similarities with the Bayesian CART algorithm [2], in which
a CART tree is optimized stochastically. Both of these algorithms are dis-
tinct from the greedy algorithm employed by CART, in that at any stage
they not necessarily pick the move that improves the score the most.

Ezample

We simulated a data set with 500 cases and 20 binary predictors. Each
predictor & is simulated from as an independent Bernoulli random variables,
with success probability pr between 0.1 and 0.9. The response variable is
simulated from the model

Y =3+41L, — 2Ly + Z, (20.1)

where L; = (X, VX5) and Ly = (X3V X}), and Z is independent standard
normal noise. We use linear regression within the logic regression framework
to find L; and Ly. The results of letting zlogic find the best model of any
size with two logic trees is shown in Figure 20.3. The logic trees in these
figures are read upside down; for example, in the left-hand side of this figure
Ly = (X4 A (X153 V Xq1)) V X3. As can be seen, these trees are too large,
and model selection needs to be carried out.

While the example in this chapter uses linear regression, all model-
ing options can also be applied to any other regression model with an
appropriately defined score function.

20.2.3 Find the best scoring models for various sizes

In certain situations it is of interest to know what the best scoring logic
regression model of a certain size is. The size of a logic regression model is
defined as the total number of leaves in all Logic Trees combined, thus the

20. Logic Regression - Methods and Software 339

il
o i
a4
i
gl
g -
S Y
o 7 E
@ B
I A
o ™
> \
i N,
__
4 \
o B
g | B a BB
T T j j ‘
) 2 6 8 10

model size

Figure 20.4. Scores of the best model of a specific size when two logic trees are
fit to the simulated data set. The white 2 denotes that the logic model was fit
with two trees. In general, models with various numbers of trees are fitted, but
only the scores for two-tree models of sizes 2 through 10 are shown here.

model displayed in Figure 20.3 has size 11. Finding models of a fixed size
is essential when using cross-validation to determine the best overall model
size, as discussed below. For the simulated annealing algorithm described
above, the tree or model size changes constantly, and the final model can be
of any size. The straightforward solution to find the best scoring model of a
fixed size would be to alter the move set, and only allow moves that keep the
size of the model constant. However, this turns out to be computationally
inefficient, as the resulting chains do not mix very well because the move set
becomes more complicated. Thus, instead we do allow moves that increase
or decrease the size of the Logic Regression model, but we prohibit moves
that increase the model size when its desired size has been reached. Strictly
speaking, this guarantees us only to find the best of up to the desired
size. In reality, the maximum (desired) tree size almost always is reached,
provided this size is not too large.

Ezample (cont.)

In Figure 20.4 we show the score of the best Logic Regression model of size
for a variety of sizes two through ten, when two logic trees are fit. We note
that the score improves considerably up to size four, and levels out after
that. In fact,, the best logic model of size four has the correct L; and Lo
in model (20.1).

20.2.4 Carry out cross-validation for model selection

Searching for the globally best scoring model on the entire data, we know
that the model with the best predictive capability may be smaller than
the model we find via simulated annealing. We therefore want to compare
the performances of the best models for different sizes. This can be done
using an independent test set or by cross-validation. When sufficient data
are available, we prefer the training set/test set approach. Otherwise, we

340 Ruczinski, Kooperberg and LeBlanc

can use cross-validation instead. Assume we want to assess how well the
best model of size k performs in comparison to models of different sizes.
We split the cases of the data set into m (approximately) equally sized
groups. For each of the m groups of cases (say group i), we proceed as
follows: remove the cases from group ¢ from the data. Find the best scoring
model of size k (as described in the previous section), using only the data
from the remaining m — 1 groups, and score the cases in group i under this
model. This yields score €;. The cross-validated (test) score for model size
kis e, = % >; €ri- We can compare the cross-validated scores for models
of various sizes.

Ezample (cont.)

In Figure 20.5 we show both the average training and (cross-validation)
test score. As can be seen, the training scores decrease as the model size
increases, but the test scores are minimized for model sizes four and five.

1.15

scores
1.05
L

1.00
.

model size

Figure 20.5. Training (dashed) and test (solid) scores of the cross-validation model
selection for the simulated data set

20.2.5 Carry out a randomization test to check for signal in
the data

The first step in our analysis usually is check for signal in the data. To
do this, we first find the best scoring model, given the data. The null
hypothesis which we want to test is: ”"there is no association between X
the predictors and the response. If that hypothesis was true, the best model
fit on the data with the response randomly permuted should yield about
the same score as the best model fit on the original data. We carry out this
randomization procedure as often as desired, and claim the proportion of
scores better than the score of the best model on the original data as an
p-value, indicating evidence against the null hypothesis.

20. Logic Regression - Methods and Software 341

Ezample (cont.)

In Figure 20.6 we show a histogram of 50 scores of the best model based on
randomized data for the simulated example. As can be seen, these scores
are considerably worse than the true best model, making us believe that
there is signal in the data.

15
)

counts
10
.
best model
null model

15

| ‘||
o - ||

T

1.4

T
11 12 13
score

Figure 20.6. Histogram of 50 scores of the best model based on randomized data
for the simulated example.

20.2.6 Carry out a randomization test for model selection

We can carry out a similar randomization test to find the model size. First,
we find the best scoring model, with score €*, say. Assume that this model
has size k. We also find the best scoring models of sizes 0 through k. The null
hypothesis for each sequential randomization test is: “the optimal model
has size j, the better score obtained by models of larger sizes is due to
noise”, for some j € {0,...,k}. Assume that such a null hypothesis is true,
and the optimal model size is j, with score €¢;. We now “condition” on this
model, considering the fitted values of the Logic model. For a model with p
Logic Trees, there can be up to 27 fitted classes (one for each combination
of the p Logic Trees Ly, ..., L,). We now randomly permute the response
within each of those classes. The exact same model of size j considered
still scores the same, say ¢; (other models of size j potentially could score
better). If we now fit the overall best model (of any size), it will have a
score €7*, which is as least as good, but usually better, than €;. However,
this is due to noise! If the null hypothesis was true, and the model of size j
was indeed optimal, then ¢* would be a sample from the same distribution
as €. We can estimate this distribution as closely as desired by repeating
this procedure multiple times. On the other hand, if the optimal model had
a size larger than j, then the randomization would yield on average worse
scores than e*.

We carry out a sequence of randomization tests, starting with the test
using the null model, which is exactly the test for signal in the data as

342 Ruczinski, Kooperberg and LeBlanc

described in the previous subsection. We then condition on the best model
of size one and generate randomization scores. Then we condition on the
best model of size two, and so on. Comparing the distributions of the
randomization scores, we can make a decision regarding which model size
to pick.

Ezample (cont).

In Figure 20.7 we see the results of the randomization tests conditioning
on models of size 3, 4 and 5. We note that the best score is considerably
better than all scores based on randomized data sets conditioned on the
model of size three, but that this is no longer true when we condition on
the models of size four or five. This, again, suggests that the best model
does indeed have the (correct) size four.

size 3

best model for
unrandomized data

I .-
0.96 0.98 1.00 1.02 1.04

0.96 0.98 1.00 1.02 1.04

size 5 I
- il i

0.96 0.98 1.00 1.02 1.04

size 4

Figure 20.7. Histogram of 25 scores of the best model of fixed size for the
conditional randomization tests the simulated example.

20.3 Conclusion

Logic Regression considers a novel class of models to detect interactions
between binary predictors that are associated with a response variable. We
developed the Logic Regression methodology with some statistical genet-
ics problems in mind, but also found applications in other areas such as

20. Logic Regression - Methods and Software 343

medicine and finance. Areas of current and future research include assess-
ing model uncertainty using McMC, alternative ways for model selection,
such as penalized scoring functions, and development of models that take
familial dependence in genetic data into account. We also work on software
improvements.

References

[1] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C.J. (1984),
Classification and Regression Trees, Belmont, CA: Wadsworth.

[2] Chipman, H., George, E., and McCulloch, R. (1998). Bayesian
CART model search (with discussion). Journal of the American
Statistical Association, 93, 935-960.

[3] Kooperberg, C., Ruczinski, I., LeBlanc, M. L., and Hsu, L.
(2001), “Sequence Analysis using Logic Regression”, Genetic
Epidemiology, 21 (S1), 626-631.

[4] Otten, R. H., and Ginneken, L.P. (1989), The Annealing Algorithm,
Boston: Kluwer Academic Publishers.

[5] Ruczinski, I., Kooperberg, C., LeBlanc, M. L. (2001), “Logic Regres-
sion”, (under review, draft available from
http://bear.fhcrc.org/~ingor/html/publications.html).

[6] van Laarhoven, P. J., and Aarts, E. H. (1987), Simulated Annealing:
Theory and Applications, Boston: Kluwer Academic Publishers.

