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ABSTRACT We recently developed the Rosetta
algorithm for ab initio protein structure prediction,
which generates protein structures from fragment
libraries using simulated annealing. The scoring
function in this algorithm favors the assembly of
strands into sheets. However, it does not discrimi-
nate between different sheet motifs. After generat-
ing many structures using Rosetta, we found that
the folding algorithm predominantly generates very
local structures. We surveyed the distribution of
�-sheet motifs with two edge strands (open sheets)
in a large set of non-homologous proteins. We inves-
tigated how much of that distribution can be ac-
counted for by rules previously published in the
literature, and developed a filter and a scoring
method that enables us to improve protein struc-
ture prediction for �-sheet proteins. Proteins 2002;
48:85–97. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

The ab initio protein folding algorithm Rosetta1,2 carries
out a simulated annealing algorithm to search through the
conformation space of three-dimensional structures. From
the protein structure database, fragment libraries for
three and nine residue segments of the chain are gener-
ated, utilizing a sequence profile comparison method. A
move set in the annealing algorithm is defined by substitut-
ing local segments in the chain with fragments from this
library. One part of the scoring function used in the
annealing procedure favors the assembly of strands into
sheets. However, it only governs how many sheets will be
formed given the number of strands, but does not influence
how those strands get arranged in the sheets. After
generating many decoys using Rosetta, we found that the
folding algorithm predominantly generates very local
sheets.3 With the intent to correct the observed biases
towards local structures in Rosetta populations, we ana-
lyzed the three-dimensional structures in the currently
available database of non-homologous proteins (http://
www.fccc.edu/research/labs/dunbrack/culledpdb.html), and
estimated the distributions of sheet motifs with two edge
strands (open sheets) for various sizes in native structures.

Previous studies of �-sheet architecture have involved
classification of the �-sheet topologies found in nature and
the development of rules and principles that account for

the observed distributions. Richardson4 and Chothia and
Finkelstein5 classify proteins by tertiary structure pat-
terns. Holm et al.,6, Orengo,7 Orengo et al,8, and Murzin et
al.9 classify the proteins into structural families. Some
authors investigate structural motifs in a specific subset of
proteins (for example, see Orengo and Thornton10 on � � �
folds), or common motifs such as the Greek key.11 Further,
topological features such as the handedness of crossover
connections between strands have been described in the
literature.12,13 In addition to the more descriptive publica-
tions, some authors analyze folds with �-sheets and report
rules that reduce the number of possibilities for the sheet
motifs (for example, see refs.14–17; for �-sandwiches, see
refs.18,19. Only two rules, the absence of knots (no crossing
loops) and no left-handed connections,12,20 significantly
reduce the number of possible �-sheet topologies. King et
al.21 use a machine learning approach to automatically
generate rules for �-sheets in �/�-domain proteins, com-
pare their rules to the more hand-crafted rules from the
above cited literature, and assess the predictive power of
their rules. Other authors15,20 report statistics, such as the
frequencies of connection types, or the number of strands
per sheet and the number of residues in the strands and
their connecting regions, respectively, and describe the
patterns that emerge from their analysis. Richardson15

uses the occurrence frequencies of consecutive connection
types to generate pseudo probabilities, which gives a
relative ordering among possible �-sheet topologies. We
carried out our own analysis since we were interested in
modeling the distribution of sheet motifs explicitly, condi-
tioning on other known variables such as loop lengths
between strands in the sheets and the proportion of helix
residues in the structures. In addition, several hundred
structures have been added to the database in recent
years, which we use in our analysis. In this article, we
describe the derivation and utilization of a new scoring
function for �-sheet structures, which incorporates many
of the insights of the studies mentioned above in a manner
appropriate for evaluating Rosetta models.
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METHODS

Each pair of adjacent residues in a �-strand is repre-
sented as a dimer, i.e., we define one landmark per pair of
adjacent residues. We define two strands to be neighbors if
there is a pair of dimers, one dimer from each strand,
within a given distance in space (usually chosen as 5.5 Å).
The strands in the sheets are labeled by their numbers in
sequence along the backbone, starting with the N-
terminus of the protein. A motif is described by the
sequence of positions the strands have in the motif, and
their directions. For an n-stranded sheet, the position
information therefore is a permutation of the numbers 1
through n (sequence). Neighboring strands in the sheet are
either parallel or anti-parallel, and we describe this fea-
ture (orientation) by a sequence of zeros and ones (up/
down). There are two axes of symmetry for sheet motifs,
and since it is irrelevant from which angle we look at the
protein, four different motifs actually describe the same
sheet, of which only one needs to be modeled. To uniquely
characterize the sheet, we require the first strands in
sequence to be on the left side of the sheet (for sheets with
an odd number of strands we require the second strand to
be on the left side if the first strand is the center one), and
that the first strand points up. For example, Figure 2
shows all possible motifs for three-stranded sheets subject
to those requirements.

Modeling the arrangement of strands in sheets in later
sections, we assume that the secondary structure is known.
Although the arrangement of strands into sheets depends
on many characteristics of the protein under consider-
ation, we decided after an initial exploratory data analysis
to use only two features of proteins in our model that are
given with known secondary structure.

1. �/� vs. all � proteins: We consider a protein to be �/� if
at least 20% of its residues are part of a helix. There-
fore, the helical status is a binary variable.

2. The lengths of the loops between strands: A loop in this
context is the sequence of amino acids that connects the
strands under consideration. Therefore, these loops can
also contain residues that are in other secondary struc-
tures than coils. A loop between two strands is defined
as short if the number of residues was ten or less, and
long otherwise. For an n-stranded sheet, the loop
lengths are, therefore, recorded as n � 1 binary vari-
ables.

We considered the use of other known properties of
proteins in our model, such as the length of the strands in
the protein, the protein length (number of residues), and
an indicator whether or not there is a helical structure
between two strands. We only used the two features
described above, since they capture most of the informa-
tion the other characteristics provide, and because the
inclusion of more features was prohibited by the limited
amount of data available.

There are n! ways to position the strands in a sheet of
size n, and 2n possibilities for their orientations, ignoring
the axes of symmetry. After taking those into account,

there are 1
4

� n! � 2n � n! � 2n�2 possible n-stranded
motifs (assuming that all cross-overs between parallel
strand pairs are right-handed, and thus not modeling the
connections between strands). Modeling the distributions
of sheet motifs up to size four without major assumptions
and simplifications was feasible since there are only 2
motifs for 2-stranded sheets, 12 motifs for 3-stranded
sheets, and 96 motifs for 4-stranded sheets.

RESULTS AND DISCUSSION

We surveyed the distribution of �-sheet motifs with two
edge strands (open sheets) in the database of non-
homologous proteins. In agreement with previously pub-
lished investigations, we found that in general pure paral-
lel and pure anti-parallel �-sheet motifs are preferred, as
well as motifs with high numbers of sequentially adjacent
strands that are spatially adjacent as well. In addition, we
found absolute rules that eliminate some motifs from the
distribution of possible motifs. In the first part of this
section, we show some general results of our survey and
discuss a list of deterministic and probabilistic rules for
sheet motifs. These rules however are not fully sufficient to
describe the distribution of sheet motifs in native proteins.
For improved ab initio structure prediction of �-sheet
proteins a scoring function that reflects the entire motif
distributions of sheets in native proteins is valuable. We
show more detailed results of our survey in the second part
of this section, and use those results to model a scoring
function for �-sheet motifs. In the last part of this section,
we show some applications of our methods for structure
prediction of �-sheet proteins.

Some Rules for �-sheet Motifs

Previously described rules reduce the number of possibili-
ties for the sheet motifs.14–17 Using only two rules, namely
no knots/crossing loops and no left-handed connections,
the number of possible topologies for the �-sheets can be
substantially limited. In addition to those deterministic
rules, some authors have pointed out probabilistic rules.
For example, Richardson15 pointed out the preference for
pure parallel and pure anti-parallel �-sheets, and Cohen et
al.14 reported the preference of sequentially adjacent
strands in the sheet to be spatially adjacent as well. Below,
we summarize some of those rules, and illustrate them for
four-stranded sheets. Although there are 96 possible mo-
tifs for four-stranded sheets in theory, we observed only 48
of those in the database. Among those, 17 motifs were
observed only once or twice. We saw a total of 872
four-stranded sheets in the database, but only 19 different
motifs were observed eight times or more. In Table I,
motifs are classified into three groups based on their
frequency of occurence in our database: frequent (eight or
more times), rare (at least one but less than eight times), or
never. Figure 1 shows the motifs that we did not observe at
all in the database, and Figure 3 shows the most likely
four-stranded motifs, for both �/� and all � proteins and
various loop lengths between the strands.

Table I shows the extent to which the various rules hold
up in the current database of �-sheet proteins. There are a
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total of 17 motifs that violate one of the four of the absolute
rules, and none of these are observed in proteins. Assum-
ing that all loops between parallel strand pairs are right-
handed, there can be a clash between two crossings
connecting pairs of parallel strands in some motifs (panels
4, 13, 26 and 31 in Figure 1, Table I “clashes”). Cohen et
al.14 noted the absence of what they call “pretzels.” The
authors report that the spatial strand sequence 2,413
never occurs in sheets (Fig. 1, panels 41–48; Table I
“2413s”). We use this term for different motifs, namely
those that have crossing loops (Fig. 1, panels 17, 23, 39 and
46; Table I “pretzels”). For obvious reasons, we named the
motifs in panels 29 and 36 spirals. As Table I shows, none
of those motifs ever occurs in native four-stranded pro-
teins. In addition to those absolute rules, probabilistic
rules can be formulated to assess the preferred status of
other motifs. Also in Table I, we illustrate the distributions
for the number of strand pairs adjacent in sequence that
are not neighbours in the sheet (referred to as “jumps”),
and the distributions for the number of parallel pairs in
four-stranded sheets. Motifs with 3 jumps never occur,
as for four-stranded sheets these motifs coincide with
the 2,413 pretzels reported by Cohen et al.14 0Clearly
discouraged are also motifs with two jumps, and simpler
motifs with none or only one jump are preferred. We can
also see from Table I that there is no frequently occuring
four-stranded sheet motif with two parallel strand pairs.
The preference for low numbers of chain reversals and
the preference for purely parallel and purely anti-
parallel �-sheets becomes even more obvious when we
regard the absolute numbers how often the motifs occur,
and relate those numbers to what would be expected to if all
sheet motifs would occur equally often (Tables II and III).

The above rules help us eliminate or discourage certain
structures that we see in Rosetta decoy sets. However,
they do not explain why, for example, we never see the all

parallel 1,243 motif (panel 2 in Fig. 1) in native proteins,
especially since the related all parallel 2,134 motif occurs
very frequently in �/� proteins. For some of the motifs that
never occur, we do not know if there are physical con-
straints that prohibit those sheets or if those were simply
never sampled by evolution. To overcome the fact that
these rules do not account for the entire distribution of
sheets motifs in native proteins, we develop a scoring
function that captures information beyond those rules.

Scoring Function for �-Sheet Motifs

We distinguish between sheets of up to four strands, and
sheets of five strands or more. For up to four strands, the
counts from the database were sufficient to determine the
probability distribution of the motifs, using the raw counts
and small pseudo counts for each motif. For larger sheets
this is not the case, and the sheet distributions were
modeled using insights gained by the studies described in
the previous section. The model, as written in equation (1)
in Scoring Function for Larger Sheets, is applicable to all
sheets of size five or larger.

Sheet motifs with four or less strands

There are only two ways for two strands to pair: parallel
or anti-parallel. Table IV shows the counts of parallel and
anti-parallel pairs of strands in the database (2,000 �
non-homologous structures) and the estimated probability
of being (anti-)parallel, conditioning on the loop length
between the two strands and the helical status of the
protein. If the loop between the two strands is ten
residues or less, chances are 99% that the sheet is
anti-parallel for both �/� and all � proteins. If the loop
has more than ten residues, �/� proteins are about twice
as likely to have a parallel sheet than all � proteins (27%
compared to 13%).

There are twelve motifs for three-stranded sheets (Fig.
2). We classify the loop lengths between the three strands
as short-short (L1), short-long (L2), long-short (L3), and
long-long (L4). For most bins (we use the term “bin” to refer
to the class of structures that have a specific motif, loop
length distribution and helical status), the initially fitted
probabilities were very similar, comparing �/� and all �
proteins. Using �2 tests for bins with sufficient counts, we
determined which bins we could combine for �/� and all �
proteins. We removed single counts from bins and used
small pseudo-counts to fit the motif probabilities, which
are shown in Table V. Adding pseudo counts avoids
completely ruling out motifs which are not in the database,
but still strongly discourages them. For most bins we
found no difference between �/� and all � proteins. For
each type of protein however, there are vast differences
between the class of loop lengths. If both loops are short,
then the up-down-up motif M3 is by far the most likely
(probability � 90%). Only motifs M6 and M12 were ob-
served in the database as well, all other motifs have a very
small chance, which is only nonzero due to the pseudo
counts. If not both loops are short, especially if both loops
have more than ten residues, motifs M6 and M12 become
even more likely alternatives to M3.

TABLE I. Absolute and Probabilistic Rules for
Four-Stranded �-Sheet Proteins†

Feature Total Frequent Rare Never

Absolute rules
clashes 4 0 0 4
2413s 8 0 0 8
pretzels 4 0 0 4
spirals 2 0 0 2

Probabilistic rules
3 jumps 8 0 0 8
2 jumps 40 3 11 26
1 jump 40 13 14 13
0 jumps 8 3 4 1
3 parallel pairs 12 3 2 7
2 parallel pairs 36 0 10 26
1 parallel pair 36 8 14 14
0 parallel pairs 12 8 3 1

†The features are described in detail in Results. The sheet motifs are
classified into three groups based on their frequency of occurence:
frequent (eight or more times), rare (at least one but less than eight
times), or never. The motif in panel 46 in Figure 1 is the only motif
subject to two absolute rules (“2413s” and “pretzels”).
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There are eight classes for the loop lengths between the
four strands, labeled as follows:

L1 short short short
L2 short short long
L3 short long short
L4 short long long
L5 long short short
L6 long short long
L7 long long short
L8 long long long

As for the three-stranded motifs, we used �2-tests to
determine which bins we can combine for �/� and all �
proteins, and used small pseudo-counts to fit the motif
probabilities of the four-stranded sheets. Displaying all

fitted probabilities would be excessive (96 motifs, 8
length classes, and 2 classes for the helical status equals
1,536 bins). Instead, we show the motifs that have a
probability of 5% or more in their respective length
classes for both �/� and all � proteins in Figure 3. The
preference for pure anti-parallel �-sheets is quite strik-
ing for four-stranded sheets. Pure parallel motifs only
occur frequently in �/� proteins when all loops have
more than ten residues. In that case, the pure parallel
2,134 motif is the most likely [Fig. 3(a), top right). It
occurred 44 times in the database, although the very
similar all parallel 1,243 motif (Figure 1, panel 2) never
did. Also noteworthy are the Greek key motifs (anti-
parallel 2,341 and 1,432 motifs), previously dis-
cussed,11,15 which occur in both �/� and all � proteins.

Fig. 1. A complete list of four-stranded motifs that did not occur in the Dunbrack database, the motifs are
sorted by the number of jumps, strand sequence, and strand orientation (in that order). Motifs with clashes are
in panels 4, 13, 26, 31, motifs with 2,431s are in panels 41–48, motifs with pretzels are in panels 17, 23, 39, 46,
and motifs with spirals are in panels 29 and 36.
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Scoring Function for Larger Sheets

In Methods, we established that there are n! � 2n�2

possible motifs for n-stranded sheet. In our model, we also
take into account whether the protein is �/� or all � (2
classes) and the loop lengths between the strands (2n�1

classes). Hence, to model a probability distribution for the
motifs of an n-stranded sheet we have to consider n! �
2n�2 � 2 � 2n�1 � n! � 22n�2 bins. For up to four strands,
the counts from the database were sufficient to model the
probability distribution of the motifs, using the raw counts
for each motif. For larger sheets, this is no longer the case.
Five-stranded sheets can have 960 different motifs, and

TABLE II. Distribution of Parallel Pairs in �-Sheets With Two Edge Strands†

nstrand

Number of parallel pairs

0 1 2 3 4 5 6 7

Percentages derived from the database
3 81.3 15.4 3.3
4 70.0 19.4 3.1 7.5
5 33.4 27.6 13.4 3.1 22.5
6 24.2 19.5 11.6 6.8 16.8 21.1
7 24.2 12.6 7.8 4.8 22.5 10.8 17.3
8 23.1 15.6 9.1 5.4 7.5 15.1 7.5 16.7

Ratios of observed and expected percentages
3 3.3 0.3 0.1
4 5.6 0.5 0.1 0.6
5 5.4 1.1 0.4 0.1 3.6
6 7.8 1.3 0.4 0.2 1.1 6.7
7 15.5 1.3 0.3 0.2 1.0 1.2 11.1
8 29.6 2.9 0.6 0.2 0.3 1.0 1.4 21.4

†Shown are the parallel strand pair distributions for the sheet motifs of sizes 3–8, respectively, in the database and the ratio of the
observed percentages and the percentages calculated under the assumption that all motifs are equally likely. A ratio larger than one,
therefore, indicates that the motif type is observed more often than expected under the above assumption. This shows a clear
preference for all parallel and all anti-parallel motifs.

TABLE III. Distribution of Sequentially Adjacent Strands That Are Not Adjacent in the Sheet (Jumps)
in �-Sheets With Two Edge Strands.†

nstrand

Number of jumps

0 1 2 3 4 5 6 7

Percentages derived from the database
3 57.7 42.3
4 20.6 59.1 20.3 0.0
5 8.6 46.2 38.0 6.2 1.0
6 10.0 33.4 42.1 13.2 1.0 0.3
7 7.8 23.8 38.1 24.2 6.1 0.0 0.0
8 6.4 28.5 16.1 30.1 15.1 3.8 0.0 0.0

Ratios of observed and expected percentages
3 1.7 0.6
4 2.5 1.4 0.5 0.0
5 5.2 3.5 1.0 0.2 0.1
6 36.0 11.0 2.5 0.4 0.1 0.0
7 196.4 42.9 8.5 1.4 0.2 0.0 0.0
8 1300.7 337.9 17.8 5.5 0.8 0.1 0.0 0.0

†Shown are the the distribution of jumps for the sheet motifs of sizes 3–8, respectively, in the database and the ratio of the observed
percentages and the percentages calculated under the assumption that all motifs are equally likely. A ratio larger than one, therefore,
indicates that the motif type is observed more often than expected under the above assumption. This shows a clear preference for motifs with
few jumps.

TABLE IV. Counts and Fitted Probabilities for Parallel (P)
and Anti-Parallel (AP) Pairs of Strands in �/�

and All � Proteins†

�/� All �

S L S L

Counts
P 8 127 3 32
AP 609 338 278 207

Probabilities
P 0.01 0.27 0.01 0.13
AP 0.99 0.73 0.99 0.87

†S denotes a short loop (ten or less residues), L denotes a long loop
(more than ten residues).
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taking loop lengths and whether the protein is �/� or all �
into account, there are 30,720 bins to model. In addition,
the counts of sheets in the database rapidly decline with
sheet size (Fig. 4). We already established that there is a
preference for low numbers of jumps and a preference for
purely parallel and purely anti-parallel �-sheets. This can
also be seen in Figure 5. Exploratory data analysis also
showed that the position of the first strand in the motif is
not random. To proceed with the modeling of the sheet
configurations, we made the assumption that the likeli-
hood of an individual motif can be modeled by global
features, such as the number of parallel pairs and the
number of sequentially adjacent neighbors in the sheet.
Analyzing the data, we decided to describe a motif in a
sheet of size five or larger by five different variables: (1)
The number of parallel neighbour strands in a motif, and

(2) how many of those are connected by short loops; (3) The
number of strand pairs adjacent in sequence that are not
neighbors in the sheet (jumps), and (4) how many of those
jumps there are with a short loop between the strand pair;
(5) The position of the first strand in the motif. These
features were not assumed to be independent. The fact
that several different motifs [as described by features
(1)–(5) was taken into account.] The features were com-
bined into a distribution function for scoring individual
sheets. Below, we give a rough outline of the model, and
refer the reader to the thesis of Ruczinski22 for details. The
relevant chapter is also available online (http://www.jhsph.
edu/biostats/research/ruczinski.html).

Let H be the helical status of the protein and let L be
the loop length distribution between the n strands. Let
Pp be the number of parallel neighbour strands in a
motif, Ps

p the number of parallel neighbour strands in a
motif with a short loop in between, J the number of
jumps, Js the number of jumps with a short loop between
the strand pair, and F the position of the first strand in
the motif. Then, using rules for conditional probabili-
ties, we get

P	Pp,Pp
s,J,Js,F�n,H,L


� P	F�,H,L
 � P	Pp,Pp
s,J,Js�,H,L,F


� P	F�,H,L
 � P	Pp,J�,H,L,F
 � P	Pp
s,Js�,H,L,F,Pp,J
 (1)

After carrying out some exploratory data analysis and
simple statistical tests, we found that Ps

p and Js can be
taken to be conditionally independent, given n, H, L, F, Pp,
and J. The first two terms on the right-hand side of
equation (1) are estimated non-parametrically using counts
from the database, the two terms arising from the last
term of the right-hand side of equation (1) are estimated
using binomial models.

Fig. 2. The twelve possible configurations of three stranded sheets,
taking the two axes of symmetry into account. The probability distributions
for those motifs are shown in Table V.

TABLE V. Fitted Probabilities for Three-Stranded Motifs in �/� and All �
Proteins, Conditional on Loop Lengths†

�/� all �

L1 L2 L3 L4 L1 L2 L3 L4

M1 .004 .006 .005 .049 .004 .006 .005 .042
M2 .004 .006 .083 .080 .004 .006 .083 .068
M3 .897 .401 .276 .162 .897 .611 .422 .252
M4 .004 .262 .005 .029 .004 .042 .005 .024
M5 .004 .006 .005 .019 .004 .006 .005 .016
M6 .036 .012 .547 .282 .036 .012 .401 .239
M7 .004 .006 .048 .032 .004 .006 .048 .027
M8 .004 .006 .005 .014 .004 .006 .005 .012
M9 .004 .006 .005 .114 .004 .006 .005 .012
M10 .004 .006 .005 .035 .004 .006 .005 .030
M11 .004 .027 .005 .032 .004 .028 .005 .027
M12 .028 .259 .010 .153 .028 .267 .010 .252
†A short loop has ten or less residues, a long loop more than ten residues. The loop lengths
between the strands are short-short (L1), short-long (L2), long-short (L3), and long-long
(L4). The motifs (M1–M12) are shown in Figure 2. Probabilities of more than 5% are
highlighted in bold.
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Application to Structure Prediction for �-Sheet
Proteins
Sheet filter

In Methods, we described the procedure necessary to
extract the sheet information from the structures in the
currently available database of non-homologous proteins.
This procedure will not be able to extract the sheet
information when the sheet under consideration is not
properly formed in a Rosetta structure. This happens, for
example, when a strand has more than two neighbor
strands according to our neighbor definition (see Methods),
or if a strand is unpaired. We transformed the previously

described procedure to also evaluate the quality of sheets
in the predicted structures, filtering out structures with
poorly assembled sheets. After a more detailed description
of this filter, we show how it actually improves the overall
quality of decoy sets.

In structures generated by Rosetta, we usually allow
distances of 6.5Å in the definition of neighbor strands,
since we do not model hydrogen bonds explicitly, and
strand pairs might not be aligned perfectly. After strand
neighbors are identified, the sheet motif can be easily
determined, unless the structure does not have a proper
sheet. The routine we implemented sequentially checks

Fig. 3. Four-stranded motifs with probabilities larger than 5%. The actual probabilities (rounded, in percent)
are indicated above the motifs. L1 through L8 refers to the loop length classes, defined in Results.
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the following criteria, and rejects the structure under
consideration for not having a proper sheet if any of those
criteria are met: (1) The decoy does not have any strands at
all or only has a single strand, but secondary structure
predictions indicated that the structure should contain
strands. (2) At least one strand has more than two
neighbors, or at least one strand has no neighbors, i.e., the
strand is included in an improper sheet, or it is unpaired.
(3) The connection between two parallel strands is a
left-handed connection. (4) Three or four strands in a
structure form a barrel type structure, i.e., each strand in
that formation has exactly two neighbors. In our database,
there are only barrels of size five or larger (predominantly
size eight).

We also tried to incorporate other features in the filter,
but found that those did not help discriminate good from
bad decoys after applying the above-mentioned rules. For
example, we also included a subroutine in the filter that
checked for poorly aligned neighbor strands, allowing for a
twist in the sheet.23 The fact that this feature did not

Fig. 4. The counts of sheets of sizes 2–10 observed in non-
homologous proteins.

Fig. 5. Larger sheets frequently observed in the database. The sheets clearly have common patterns.
There is a preference for purely parallel or purely anti-parallel motifs, and motifs with no or few chain
reversals.
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provide any additional discriminatory power is probably
because a similar term is used in the scoring function of
Rosetta that guides the folding of the decoy. In the future,
additional features could be added to the filter. For ex-
ample, “pretzels” are strongly discouraged by the distribu-
tion of sheet motifs we described earlier but can be
completely ruled out by using a filter that excludes these
motifs.

To quantify how the filter improves the overall quality of
decoy sets, we applied the filter to structures generated for
52 �-sheet containing proteins of up to 150 residues. The
52 targets are the �-sheet containing proteins of the
Friesner laboratory list of small proteins.24 For each
protein, we generated between 1,000 and 2,000 structures,
and divided them into good and bad sets, according to our
filter. Figure 6 shows the improvement in average rmsd
achieved for the filter. The x-axis is the average rmsd for
the decoy set generated, the y-axis is the difference in
average rmsd between the decoys that passed the filter
and the decoys that did not. The average rmsd for the
decoy sets range from 4.4Å for the zinc finger DNA binding
domain (5znf) to 15.6Å for a cell adhesion protein (1fbr).
Using the filter, we could not achieve any discrimination
between better and worse structures for the poor decoy
sets (average rmsd more than approximately 10Å). This is
not surprising, since the “better” decoys were still poor
structures. However, for better quality decoy sets we

consistently achieved improved average rmsd for the struc-
tures that passed the filter compared to those that did not.

Another interesting feature of the filter is that it might
enable us to predict the quality of the decoy sets from the
acceptance frequency of the structures. Figure 7 shows the
acceptance frequency (percentage of decoys that passed
the filter) vs. the rmsd 5th percentile, another measure of
quality of the respective decoy set. While not all good decoy
sets had a high acceptance ratio, all decoy sets with high
acceptance ratios had many low rmsd structures. In other
words, if our filter passes many structures, we can be
confident that Rosetta produced some near-native struc-
tures for the protein.

Elimination of bad structures using the scoring
function

Since the Rosetta folding algorithm starts with the
extended chain of amino acids and sheets are formed
during the annealing process, the sheet scoring function
as described earlier is only useful for distinguishing
between folded structures in a decoy set. At this point,
Rosetta is mainly used to predict ab initio structures of
small proteins. While Rosetta still fails to generate a
large variety of complex structures and, depending on
the secondary structure prediction for the target, sheets
with five or more strands are rare in the decoy sets,
Rosetta consistently generates good decoys for proteins

Fig. 6. The improvement in average rmsd achieved for 52 small proteins. On the x-axis, is the average
rmsd for the complete generated decoy set: on the y-axis, is the difference in average rmsd between those
decoys that passed the filter and those that did not. Improvements are achieved for almost all decoy sets with
less than 10Å average rmsd.
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with smaller sheets. In those cases, the sheet scoring
function proves to be quite useful to discriminate good
and bad structures. The sheet scoring function reflects
the frequency of how often sheet motifs occur in native
proteins. Hence, not necessarily are the motifs in a decoy
set that get assigned the highest probabilities the
correct ones, and we do not expect those decoys to
necessarily have the lowest rmsds. However, the motifs
that are totally discouraged by the scoring function, i.e.,
that never or very rarely occur in native proteins, are
usually in decoys with very high rmsd (Fig. 8), and the
elimination of those further improves the decoy sets and
aids in the pick of a final prediction for the targets.

The sheet filter and the scoring function are two meth-
ods to discriminate between good and bad decoys. Since
the scoring function can only be applied to structures with
proper �-sheets, the filter is a prerequisite for the scoring
function. The �/� and all � ab initio targets in the Fourth
Community Wide Experiment on the Critical Assessment
of Techniques for Protein Structure Prediction (CASP4,
described in structure prediction for �-sheet proteins in
CASP4) contained mostly large sheets, for which not very
many decoys with proper sheets could be generated.
Therefore, only the sheet filter was used in this round of
CASP for the selection of candidates from the decoy sets.
In the future, as Figure 8 suggests, once enough decoys
with good sheets for the targets can be generated, the
scoring function can be of great help for picking the final
predictions by further eliminating structures with un-
likely sheet configurations. This could potentially be a

problem if the target protein has a rare topology. It,
therefore, might be more advantageous, once large decoy
sets with good sheets can be generated, to adjust the
distribution of �-sheet motifs in the decoy sets according to
the distribution of motifs in native proteins, which is
described by the scoring function.

Structure prediction for �-sheet proteins in CASP4

For an objective comparison of existing protein structure
prediction methods, a bi-annual blind test, the Community
Wide Experiment on the Critical Assessment of Tech-
niques for Protein Structure Prediction (CASP), has been
carried out (http://predictioncenter.llnl.gov). For this ex-
periment, the sequences of some newly (by X-ray crystallog-
raphy or NMR) solved three-dimensional protein struc-
tures are distributed prior to publication of the structure.
The structure of those targets are not published until after
a given deadline, which gives CASP participants the
chance to submit their predictions for the 3D protein
structures. The above-described procedures were part of
our CASP4 protocol.25–27 As a first step, we generated up
to 150,000 independent structures (decoys) for each target.
In the second step, the decoy sets were filtered. We
corrected for the low contact order bias we observed in
previous Rosetta populations.3 For targets with strands
we applied the sheet filter described here and removed
structures with non-protein-like strand arrangements,
which turned out to be between 30 and 90% of the decoys.
Then the decoys (backbone plus one centroid per residue)
were expanded by the addition of side chains26 to an all

Fig. 7. Acceptance frequencies vs. rmsd 5th percentile for 52 decoy sets. The rmsd 5th percentile is the
rmsd that separates 5% of the decoys with the lowest rmsds from the higher rmsd structures. All decoy sets
with high acceptance frequencies contain many low rmsd, i.e., near-native structures. However, the converse
is not necessarily true. The fact that all proteins with 7 or more strands are in the top left corner illustrates the
problems that Rosetta still has folding those structures.
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atom models. A physically based all-atom potential was
applied to identify well-packed models (Tsai, unpublished
data). The last step was to cluster the filtered structures
for each target.27 The cluster centers were ranked by size,
and, in general, the five largest unique clusters were
submitted as predictions for the respective targets (manual
inspection of cluster centers was still necessary for larger
targets). In some cases, there was not enough computing
time available to add side chains to all structures before
clustering, so the last two steps were exchanged.

Rosetta’s CASP4 ab initio structure predictions were
considerably more consistent and accurate than structures
produced by ab initio structure prediction methods in the
past (including our own), for example those submitted for
CASP3.28 Since participating in CASP3,29 we altered our
prediction method in various ways. Mainly, we improved
the basic simulation methods, and added the previously
described filters and clustering technique (details given in

ref.25. One of the motivations for the development of the
sheet filter was our failure in CASP3 to consistently
predict �-sheet proteins. While it is impossible to separate
the effects that the various improvements in Rosetta for
the CASP4 predictions had, it appears that the sheet filter
together with the correction for the low contact order bias
was crucial for the prediction of several �-sheet containing
targets. Besides making the clustering procedure feasible
by substantially reducing the total number of decoys, the
�-sheet filter also improved the overall quality of the decoy
sets (Fig. 9). While the only globally correct structures we
submitted in CASP3 were �-helical domains,29 we were
able to predict ab initio �-sheet protein structures of
unprecedented accuracy in CASP4 (targets T087 ab, T091,
T105, T110, T116ab, Fig. 10). To our knowledge, our
predictions for the domains A and B for target T087 (164
and 192 residues, respectively) are the largest correct ab
initio predictions of �-sheet containing structures to date.

Fig. 8. Rmsd vs. motif distribution score. For ease of visualization, motif scores were jittered slightly. The
SH3 domain and Rs-afp1 have a single three-stranded sheet each, Protein G and Protein L have a single
four-stranded sheet each. Shown are only the decoys with the correct number of strands in the respective
structure. Since the scoring function reflects the frequency how often sheet motifs occur in native proteins,
motifs that score close to zero are usually in decoys with very high rmsds, and the elimination of those further
improves the decoy sets. Note that all decoys with rmsd smaller than say 5.5Å have probability scores larger
than 5%.
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CONCLUSION

We surveyed the distribution of �-sheet motifs with two
edge strands (open sheets) in the database of non-
homologous proteins, and examined deterministic and
probabilistic rules for sheet motif distributions. We used
the results of our survey to develop a full scoring function
of sheet motifs for both �/� and all � proteins, which also
takes the loop lengths between the strands into account.
This scoring function, paired with a filter to eliminate
structures with poor sheet configurations, proved to be
valuable in discriminating good and bad decoys. In ab
initio structure prediction, the use of the scoring function
is still limited, but will become more important in the
future, since we hope to be able to use the increase in
computer power to create Rosetta decoys with larger and
more non-local sheets. We modeled the distributions of
�-sheets, but the physical origins of those distributions
remain unclear. However, it is not obvious to us why some
motifs were not in the database we investigated, although
some very similar motifs occur frequently in nature. For
example, the all parallel 1,243 motif (panel 2 in Fig. 1)
never occurs in native proteins, but the related all parallel
2,134 motif occurs very frequently in �/� proteins [Fig. 3(a)
L8]. Similarly, the motif in panel 1 of Figure 1 never occurs
in native proteins, but reversing the order of the first two
strands makes it a likely motif in �/� proteins [Fig. 3(a)

Fig. 9. The effect of the �� sheet filter on the decoy set for domain A
of target T087. The filter effect is a relative measure of the efficiency of the
filter on a decoy set. This score for each rmsd bin is the percentage of
decoys in that bin that passed the filter, divided by the percentage of all
decoys in that bin before applying the filter. Hence, the filter effect of a
non-informative filter is 1, indicated by the solid line. In this example, the
proportion of structures less than 9Å is almost 2.5 times higher in the
filtered decoy set compared to the overall population.

Fig. 10. Predicted and actual structure of �-sheet CASP4 targets. For a detailed description of each target
see Bonneau.25
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L7]. This puzzle poses an interesting challenge for current
protein design methods.

Some results of our studies are available online at
http://biosun01.biostat.jhsph.edu/iruczins/ sheets/sheets.
html. We provide a tool to search the pdb database for
specific sheet motifs, and an online version of our scoring
function.
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