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Missing single nucleotide polymorphisms (SNPs) are quite common in genetic association studies. Subjects with missing
SNPs are often discarded in analyses, which may seriously undermine the inference of SNP-disease association. In this
article, we develop two haplotype-based imputation approaches and one tree-based imputation approach for association
studies. The emphasis is to evaluate the impact of imputation on parameter estimation, compared to the standard practice
of ignoring missing data. Haplotype-based approaches build on haplotype reconstruction by the expectation-maximization
(EM) algorithm or a weighted EM (WEM) algorithm, depending on whether case-control status is taken into account. The
tree-based approach uses a Gibbs sampler to iteratively sample from a full conditional distribution, which is obtained from
the classification and regression tree (CART) algorithm. We employ a standard multiple imputation procedure to account
for the uncertainty of imputation. We apply the methods to simulated data as well as a case-control study on developmental
dyslexia. Our results suggest that imputation generally improves efficiency over the standard practice of ignoring missing
data. The tree-based approach performs comparably well as haplotype-based approaches, but the former has a
computational advantage. The WEM approach yields the smallest bias at a price of increased variance. Genet. Epidemiol.
30:690–702, 2006. r 2006 Wiley-Liss, Inc.
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INTRODUCTION

It is widely recognized that complex diseases
are likely caused by multiple susceptible loci, each
contributing a small to medium amount to the
disease risk, that are potentially interacting with
each other [Risch, 1990, 2000; Botstein and Risch,
2003]. While linkage analysis shows to be largely
ineffective, association studies, in which the
frequencies of marker alleles in affected indivi-
duals and controls (either population- or family-
based) are compared, may hold the promise of
dissecting the genetic susceptibility of complex
diseases [Risch, 2000; Botstein and Risch, 2003].
With the explosion of single nucleotide poly-
morphism (SNP) discovery and the advances in
genotyping technologies, numerous SNP-based

association studies have been carried out in a
scale ranging from a few candidate genes to the
whole genome [Barnby et al., 2005; Cope et al.,
2005; Hu et al., 2005]. Despite the increasingly
improved cost efficiency and call rate in genotyp-
ing, missing SNP data are fairly common in these
association studies, sometimes with a rate of
5–10%. Although highly desirable, re-genotyping
the missing ones is often not practical due to
financial constraint.

Depending on the analytical strategy under-
taken, the missing SNPs have different impact on
association inference. The haplotype approach
treats a collection of adjacent SNPs in linkage
disequilibrium (LD) all together and models the
disease-haplotype association [Schaid et al., 2002;
Zhao et al., 2003; Epstein and Satten, 2003; Stram
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et al., 2003]. Missing SNPs are essentially imputed
in the process of haplotype reconstruction with
a cost of extra variation. Although haplotype
analysis is effective to model SNPs in a tight LD
block, it runs into difficulties when there are a
large number of SNPs under investigation and
LD blocks are not well defined (for example,
the 10 SNP developmental dyslexia (DD) data in
this article). In view of the polygenic nature of
complex diseases, an alternative strategy is to
directly regress disease status on the SNP main
effects and SNP-SNP interactions. Cordell and
Clayton [2002] proposed a stepwise logistic
regression procedure for both case-control data
and family data. Ruczinski et al. [2003] developed
logic regression, an adaptive regression methodol-
ogy well suited for detecting interactions between
binary SNP variables. These SNP-based ap-
proaches build the regression model by search
algorithms, offer a flexible choice of hypothesis
testing, yet remain computationally tractable.
However, missing data in SNP genotypes pose a
serious problem to regression approaches. This
paper is concerned with imputation methods to
improve inference in association studies that use
SNPs as predictors.

The standard procedure to cope with the
missing SNPs is to ignore the individuals that
have missing values in the SNP loci under
investigation (but to include individuals that
may have missing data for other SNPs, in a sense
‘‘all-available’’ data for the model), the so-called
complete-case analysis. In general, the complete-
case analysis reduces the effective sample size
and potentially introduces bias in parameter
estimates [Greenland and Finkle, 1995]. In parti-
cular, if a large number of SNPs are under
investigation simultaneously [for example, logic
regression; Ruczinski et al., 2003], the proportion
of individuals with at least one missing value
can be quite high, even if the rate of missing
SNPs is low for each locus. Given that neighboring
SNPs are in LD, it is feasible to impute
missing SNPs by borrowing information from
the observed ones. Furthermore, the imputation
may also benefit from incorporating information
on disease status and other covariates. For
example, when we studied the association
between breast cancer and polymorphisms in
the XPD gene in a matched case-control study,
the imputation frequencies for missing SNPs
relied strongly on disease status and whether
there was a family history of breast cancer
[Brewster et al., 2006]. It is therefore desirable to

develop a flexible imputation approach which
takes into account LD in neighboring SNPs, as
well as disease status and covariates if they are
relevant.

The aforementioned haplotype reconstruction
can be used for imputation even when the
regression modeling involves individual SNPs.
Existing expectation-maximization (EM) algo-
rithms [Excoffier and Slatkin, 1995; Qin et al.,
2002] accommodate missing SNPs by first repla-
cing the missing locus with all possible alleles.
After haplotype reconstruction, the missing SNP
genotypes are filled by sampling compatible
haplotypes from their conditional distributions
given the unphased genotypes. Similarly, Baye-
sian methods for haplotype reconstruction can
be use for imputation [Stephens et al., 2001;
Niu et al., 2002; Lin et al., 2002]. All these
methods may over-simplify the haplotype
distribution in case-control samples, as the fre-
quencies of the disease-associated haplotypes
may differ between cases and controls. To
alleviate this problem, Lake et al. [2003] used a
weighted EM (WEM) algorithm to jointly model
the haplotype effects and haplotype frequencies.
Epstein and Satten [2003] developed a retro-
spective likelihood, and estimated haplotype
frequencies separately in cases and in controls.
These methods can be easily adapted to imputing
missing SNPs, with disease status and extra
covariates being accounted for.

Alternatively, nonparametric regression meth-
ods such as classification and regression trees
(CART) [Breiman et al., 1984] can be used to
model the missing SNPs without having to
reconstruct haplotypes. Recently there is growing
interest in applying tree methods to association
studies with a large number of SNPs [Zhang and
Bonney, 2000; Bureau et al., 2005], in an attempt
to unravel the interactions of SNP-SNP and
SNP-covariate. For the purpose of imputation
here, we regress each SNP locus with missing data
on the other SNP loci, the covariates and the
disease status, build the tree, and predict
the missing data at the locus. In order to obtain
the joint distribution of missing SNPs at different
loci, we employ a Gibbs sampler which iteratively
cycles the regression and prediction by CART
through loci with missing SNPs. One advantage of
CART is that it deals with missing data by
surrogate splits. That is, after choosing the best
predictor and split point using the available data,
a list of surrogate variables and split points are
formed by comparing the performance of the
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alternate predictor with the primary predictor. If a
primary predictor is missing for one individual,
we use the secondary predictor if available, and
so on.

In this article our main goal is to demonstrate
the benefit of a reasonable imputation strategy
over simply ignoring the missing data in associa-
tion studies that use individual SNPs as predic-
tors. A secondary goal is to compare the
haplotype-based and CART-based imputation
approaches we developed. In particular, we
consider the EM and WEM algorithm as two
representatives of haplotype-based approaches
because of their easy implementation. We choose
the case-control design as an illustrative example
since it is the most commonly used in association
studies. By comparing the imputation accuracy,
bias, and efficiency in inference, we evaluate the
potential of the tree-based approach as compared
to the haplotype-based approaches, and assess
the WEM approach as opposed to the regular
EM approach.

METHODS

Assume we have a case-control study with i ¼
1; 2; . . . ; n unrelated individuals. Let Di 5 1 if
individual i is a case and Di 5 0 otherwise, and
let Gi ¼ ðgi1; gi2; . . . ; giKÞ be the unphased SNP data
on individual i at K loci of interest. Some of the giK

may be missing. Assume that in the population
there are m possible haplotypes h1; h2; . . . ; hm

with (unknown) population frequencies p ¼
ðp1; p2; . . . ; pmÞ. In addition to the genetic informa-
tion we also have information on r covariates
Xi ¼ ðxi1; xi2; . . . ; xirÞ. Throughout this article, we
assume missingness at random (MAR), that is, the
missing data mechanism depends on observed
data, not on unobserved data [Little and Rubin,
1987]. While the hypothesis of MAR cannot
formally be tested, it is a lot less stringent than
the requirement of missingness completely at
random, that is, the missing data mechanism does
not depend on any data (neither observed nor
unobserved).

HAPLOTYPE-BASED IMPUTATION

Treating haplotypes Hi ¼ ðhlðiÞ; hl0ðiÞÞ as missing
data, the EM algorithm [Excoffier and Slatkin,
1995] aims to maximize the likelihood

Yn

i¼1

PrðGijp1; p2; . . . ; pmÞ ¼
Yn

i¼1

X
Hi2Gi

plðiÞpl0ðiÞ

where l(i) refers to a conformable haplotype to the
observed Gi, and Gi is the set of all possible
haplotype pairs that conform to the observed Gi. If
the SNP at the k locus is missing for individual i,
all possible genotypes at the k locus are filled in to
construct conformable haplotypes. In the E step,
the conditional probability of each pair of con-
formable haplotypes is calculated based on the
current estimates of the haplotype frequencies

Prððh1; h2ÞjGiÞ ¼
p̂1p̂2P

Hi2Gi
p̂lðiÞp̂l0ðiÞ

: ð1Þ

Note that Hardy-Weinberg equilibrium assumes
that PrðhlðiÞ; hl0ðiÞÞ ¼ plðiÞpl0ðiÞ. The frequency esti-
mates are then re-estimated in the M-step. At
convergence, we use the conditional probabilities
of all conformable haplotype pairs in (1) to impute
the missing SNPs.

The WEM approach is an extension of the EM
algorithm which incorporates disease status, as
haplotype frequencies may be different between
cases and controls [Lake et al., 2003], as well as
other covariates that may affect the disease risk
and haplotype frequencies. Given Hi and Xi we
model the disease penetrance by a logistic function

PrðDi ¼ 1jHi ¼ ðhlðiÞ; hl0ðiÞÞ;XiÞ

¼
exp½aþ 1ðhlðiÞ; hl0ðiÞÞgþ Xib�

1þ exp½aþ 1ðhlðiÞ; hl0ðiÞÞgþ Xib�

ð2Þ

where 1ðhlðiÞ; hl0ðiÞÞ denotes a length m indicator
vector. For simplicity, we assume an additive
model so that for a heterozygous individual the
l(i)th and l0(i)th elements of this vector equal to 1
and all other elements are zero; for a homozygous
individual, lðiÞ ¼ l0ðiÞ, the l(i)th element equals 2.
Our interest is not to use (2) to model the
haplotype-disease association, but rather we use
it as a vehicle to impute the missing SNPs.

Set h 5 (a,g,b, p). Assuming H is independent X
given G, the observed data log-likelihood relevant
to h can be written as

lðhÞ ¼
Xn

i¼1

log
X

Hi2Gi

Pr a;b;gðDijHi;XiÞPr pðHiÞ

 !
:

The complete-data log-likelihood is
Pn

i¼1
ðlog Pra;b;gðDijHi;XiÞ þ log PrpðHiÞÞ: The expecta-
tion of the complete-data log-likelihood given
the observed data is

QðhjhðsÞÞ ¼Xn

i¼1

X
Hi2Gi

Wi;ðsÞ½lða;b; g;DijHi;XiÞ þ lðp;HiÞ�;
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where hðsÞ denotes the parameter estimates in the
sth iteration of the algorithm, and Wi;ðsÞ ¼

PrðHijDi;Gi;Xi; h
ðsÞ
Þ is the conditional probability

of a haplotype pair given the observed data and
the current estimates of parameters.

Wi;ðsÞ ¼

PrðDijHi;Xi; h
ðsÞ
Þ PrðhlðiÞjh

ðsÞ
ÞPrðhl0ðiÞjh

ðsÞ
ÞP

Hi2Gi
PrðDijHi;Xi; h

ðsÞ
Þ PrðhlðiÞjh

ðsÞ
ÞPrðhl0ðiÞjh

ðsÞ
Þ

:

ð3Þ

Note that the first part of expected log likelihood
is weighted log-likelihood for a generalized linear
model, such as logistic regression in (2) for case-
control data. The second part is a weighted
multinominal log-likelihood. Both can be readily
maximized using existing software. The deriva-
tion assumes Hardy-Weinberg equilibrium. We
impute the missing SNPs by sampling the
conformable haplotype pairs according to (3) at
convergence. Although we describe the WEM
approach for case-control study with logistic
regression, in principle it works for other general-
ized linear models.

The implementation of the EM and WEM
algorithms is an adaptation of the existing R
package haplo.stats [Schaid et al., 2002; Lake
et al., 2003]. We applied the haplo.em function to
perform the EM algorithm. Rather than the
regular EM algorithm, this function uses an
efficient algorithm which progressively inserts a
batch of SNP loci, enumerates possible haplo-
types, runs EM, and trims off haplotypes
with conditional probabilities below a threshold.
We set the batch size to be 3, and the minimal
conditional probability to 0.001. Starting from the
haplo.em function, we develop a WEM algorithm
similar to the haplo.glm function in haplo.stats.
The minimum haplotype frequency allowed is
set to 10�6.

TREE-BASED IMPUTATION

The tree-based approach is a general algorithm
to impute missing data, including missing SNPs
and missing covariates in SNP association studies.
For each individual i, let Mi ¼ ðMi1;Mi2; . . . ;MipÞ

be the vector of p variables consisting of the
covariates Xi ¼ ðxi1; . . . ; xirÞ and the unphased SNP
data Gi ¼ ðgi1; . . . ; giKÞ which have missing entries
ð1 � p � rþ KÞ. Let Ci be the vector of the
remaining covariates and unphased SNP data for
which all data are available. We assume that
the outcome Di is always observed. The joint

probability distribution of the missing data
for individual i given the observed data,
PrðMi1;Mi2; . . . ;MipjCi;DiÞ, is difficult to get. An
obvious problem is that the sets of missing
data Mi and complete data Ci, respectively, are
different for each individual i. Instead of model-
ing the joint distribution, we use the Gibbs
sampler, a Markov chain Monte Carlo technique
that uses conditional (low-dimensional) distribu-
tions to draw samples from a high-dimensional
distribution.

Specifically, we consider iteratively sampling
from the following sequence of the full conditional
distributions in the (s11)th iteration:

Mðsþ1Þ
1 � PrðM1jM

ðsÞ
2 ;M

ðsÞ
3 ; . . . ;M

ðsÞ
p ;C;DÞ

Mðsþ1Þ
2 � PrðM2jM

ðsþ1Þ
1 ;MðsÞ3 ; . . . ;M

ðsÞ
p ;C;DÞ

..

.

Mðsþ1Þ
p � PrðMpjM

ðsþ1Þ
1 ;Mðsþ1Þ

2 ; . . . ;Mðsþ1Þ
p�1 ;C;DÞ

where each full conditional distribution, for
example PrðM1jM

ðsÞ
2 ;M

ðsÞ
3 ; . . . ;M

ðsÞ
p ;C;DÞ, is mod-

eled by CART. This is easily done even though
M2; . . . ;Mp contain missing observations before
imputation has taken place, as CART uses
surrogate splits if missing observations are en-
countered in a node [Breiman et al., 1984]. For
example, if M1 are actual data from an SNP, each
terminal leaf in the classification trees provides
a multinomial distribution from which we can
sample. A convenient property of surrogate splits
is that we do not have to guess the initial values of
the missing data in M; as a result, only a very
short burn-in of the above sampler is required.
Under mild regularity conditions, this sequence
of conditional variables converge to the joint
distribution of missing data.

A similar idea, data augmentation [Tanner and
Wong, 1987], has been exploited to deal with
missing data in a Bayesian framework. However,
data augmentation is only analytically tractable
in some simple situations, such as a multivariate
normal distribution. The advantage of applying
decision trees such as CART [Breiman et al., 1984]
is that it can handle variables of any type, such
as 3-level factor (0,1,2) coded SNP genotypes in
a locus, or a continuous variable such as age.
Though lacking a formal proof, it has been
demonstrated in simulation studies that the
inference in missing data problems is fairly
nonsensitive to model mis-specification as long
as the distribution of the missing data given the
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observed data involves the covariates that are
ultimately found to be important in the model
[Schafer, 1997]. It is therefore natural to investigate
the performance of nonparametric regression
methods such as decision trees for imputation.
This has been suggested in the literature before
[Harrell, 2001], though not for SNP association
studies.

Our tree algorithm is based on the rpart package
in R [Therneau and Atkinson, 1997]. The nodes in
the decision trees generated by this package are
split until the improvement of impurity measure
(by default, the GINI) for the best possible split is
less than 1% of the impurity in the root node.
Also, splits are usually only attempted on nodes
with at least 5% of the number of total observa-
tions. This allows for somewhat larger trees in
case-control studies with relatively few observa-
tions. Using those parameters, we grow the trees
to full size without model selection and pruning.
In our simulations, this provided some additional
computational benefit as it was not necessary to
carry out cross-validation, without compromising
the quality of the imputations. By default, we
iterate 10 times through the set of missing
variables (‘‘sweeps’’ through the data) before
imputing the missing values. However in data
sets with severe missingness, more sweeps might
be beneficial.

MULTIPLE IMPUTATION

The uncertainty of imputations is addressed by
multiple imputation [Little and Rubin, 1987;
Schafer, 1997]. Multiple imputation is a Monte
Carlo technique which draws multiple samples
from the probability distribution of predicted
missing values. In essence, multiple imputation
acknowledges the uncertainty due to missing
data, instead of simply ignoring it: several
complete data sets are generated, and the un-
certainty in the model parameter estimates in-
corporates the standard errors of the parameter
estimates as well as the variability between the
parameter estimates from the replicate data sets.
We draw 10 samples from the resulting joint
distribution of missing data at convergence,
whether it is from EM, WEM, or tree algorithm.
Each imputed sample is analyzed by standard
methods, and the results are combined across 10
samples to get parameter estimates and their
standard errors. The details of multiple imputa-
tion have been documented in Little and Rubin
[1987] and Schafer [1997].

SIMULATIONS

Our simulation studies involved drawing case-
control samples from a population, randomly
masking a proportion of SNPs as missing, and
imputing them by the methods under investiga-
tion. We adopted an eight-haplotype distribution
based on four SNPs in the progesterone receptor
(PGR) gene [Kraft et al., 2005]. Previously, De Vivo
et al. [2002] found that a G/A polymorphism
in the PGR gene may be associated with
an increased risk of endometrial cancer. Kraft
et al. [2005] genotyped four haplotype tagging
SNPs in case-control data in order to compare
several methods currently used in haplotype-
disease association studies. Table I shows the
distribution of eight haplotypes estimated in
Kraft et al. [2005]. Based on these frequencies
and assuming Hardy-Weinberg equilibrium, we
created a population of 100,000 individuals with
diploid genotypes.

We added a disease-association signal to haplo-
type 1000 through a logistic penetrance function

logitðPrðD ¼ 1jHÞÞ ¼ �3þ b �

ðnumber of copies of h1000Þ ð4Þ

with b ¼ 0; 1, or 2. D is the dichotomous disease
status, and H refers to the haplotype pair for an
individual. We randomly sampled 100 cases and
300 controls from the population. Either 10% or
20% of the SNPs were made missing completely
at random. These missing SNPs were imputed
10 times using the EM, WEM, and tree approach.
To construct a baseline for the imputation com-
parison, we used the observed marginal SNP
genotype distribution to impute the missing ones.
We call this method the ‘‘naive’’ approach, as it
uses no information of other SNPs or the response.
We calculated the imputation error probability
for each SNP using a 0/1 loss function. That is,
we coded each genotype as 0 (homozygous wide

TABLE I. PGR haplotype frequencies [Kraft et al., 2005]
used in the simulation study

Haplotype Frequency

0000 0.3265
0001 0.1327
0100 0.0306
0101 0.0408
1000 0.1633

1010 0.0408
1100 0.0204
1110 0.2449
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type), 1 (heterozygotes), and 2 (homozygous
mutant) and any difference in imputed genotype
was counted as an error. We explored a variety of
other error functions, reaching similar conclusions
about the various approaches.

While we predisposed disease risk on the
haplotype level, we analyzed the imputed data
using SNP-based logistic regression models. We
first considered marginal SNP association with
disease by fitting a logistic regression model of
the form

logitðPrðDjSNPsÞÞ ¼ a0 þ a1x ð5Þ

where x denotes the number of variant alleles
(0,1,2) for a particular SNP. For simplicity we
treated x as a continuous variable so that having
two copies doubles the effect of having one copy.
We also investigated the effect of imputation on
simple interactions using the model

logitðPrðDjSNPsÞÞ ¼ g0 þ g1x1 þ g2x2 þ g3x1x2:

ð6Þ

Similarly, x1 and x2 are the coding variables for
SNP1 and SNP2, respectively. g3 is the interaction
parameter of interest. We compared the parameter
estimates using various approaches of imputing
SNP data with the true values, that can be
computed by fitting (5) and (6) to the whole
population.

DATA APPLICATION

We used a recently published case-control data
set on DD to compare various imputation
approaches. Cope et al. [2005] performed a high-
density LD screen in a 575-kb region of chromo-
some 6p22.2 with both case-control and family
data. After removing redundant SNPs with pair-
wise correlation r2 � 0:8, Cope et al. [2005]
genotyped 10 SNPs in 223 cases and 273 controls.
These 10 SNPs are in weak LD with average
pairwise r2 ¼ 0:16. Seven SNPs showing signifi-
cant results in case-control data were genotyped
in 143 parent-proband trios. Table II shows the
number of missing values for these 10 SNPs,
separated by cases and controls. All but 25
probands in the trios were included in the case-
control sample. Those 25 probands were added
later to cases and thus they do not have genotypes
for SNPs rs6911855, rs6939068, and rs2143340.
Cope et al. [2005] ignored missing data and
analyzed the data in a SNP by SNP fashion.

We re-analyzed the marginal SNP association in
DD data via the multiple imputation approaches

under investigation. The SNP-disease association
was modeled as in (5). To compare the imputation
errors, we randomly generated extra missing
values and computed the probability of false
imputation for the additional missing data. Para-
meter estimates for models (5) and (6) were
computed with the extra missing data imputed,
but the original missing data from Table II were
left unimputed. The ‘‘true values’’ of parameter
estimates are therefore computed from the origi-
nal data with missing values. We compared the
bias and sampling variance as in the simulation
study.

RESULTS

For the simple LD block with four SNPs as
shown in Table I, both the EM and WEM
approaches yield better predictions of the missing
SNPs than the tree approach (Table III), while all
three approaches show a marked improvement
over the naive approach. When there is no
association between the SNPs and the outcome
(b5 0), the EM and WEM approaches perform
equally well and the tree approach makes roughly
2–3% more errors on average. However, when
there is a disease risk associated with haplotype
1000 the WEM approach yields more accurate
imputations than the EM approach. As b increases
to 2, the advantage of WEM for SNP1 imputation
becomes substantial: WEM produces almost 5–6%
less errors than EM. This was expected since the
case-control status influences the estimation of

TABLE II. Percentage of missing SNPs in the
case-control study of Cope et al. [2005]

Case (n 5 248) Control (n 5 273)

SNP ] % ] %

rs2793422 27 10.8 22 8.1
rs4504469 8 3.2 9 3.3
rs6911855 30 12.1 8 2.9
rs6939068 48 19.4 25 9.2
rs2179515 16 6.5 16 5.9
rs6935076 17 6.9 18 6.6
rs2038137 19 7.8 16 5.9
rs2143340 45 18.1 23 8.4
rs3777664 24 9.6 17 6.2
rs1053598 23 9.2 15 5.5

Note: rs6911855, rs6939068, and rs2143340 have extra missing
values in cases since 25 probands from the later family study are
included. By design these 25 cases do not have the genotypes for
these three.
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haplotype frequencies. When the association is
absent (b5 0) or small (b5 1), the tree approach
performs comparably to the EM and WEM
approach. When the association is strong (b5 2),
the tree approach even outperforms EM for SNP1,
presumably because the strength of the associa-
tion now overcomes the incorrect model. Given
that the tree algorithm treats individual SNPs as
0/1/2 categorical variables, and only indirectly
models the correlation between SNPs, such
performance is impressive. A graphical represen-
tation of Table III as well as the rest of the tables
can be found as supplementary material
at http://biostat.jhsph.edu/�iruczins/
supplements/05.comparison.

In Table IV we compare the effects of the
different imputation approaches on estimating
association parameters when 10% of the SNPs are
missing. The left four columns depict the esti-
mates of log-odds ratio for SNP3, as modeled by
a1 in (5); the right four columns show the estimate
of the interaction effect between SNP2 and SNP3
as modeled by g3 in (6). The lines ‘‘True data’’ refer
to the case-control data before SNPs were made
missing, as these are the best imputations one
can ever obtain. Compared to the complete-case
analysis, all three imputation methods decrease
sampling variances of parameter estimates and
hence mean square error (MSE). The reduction of
MSE ranges from 5–15% for the marginal effect, to
15–30% for the interaction effect. For SNP inter-
actions, the complete-case analysis hurts more
because 10% missing values in each SNP may

result in up to 20% missing in either one of two
SNPs. Among the three imputation methods,
WEM has the smallest bias particularly when
there is strong association between haplotype 1000
and disease, yet it incurs the largest sampling
variances. This is an example of bias-variance
tradeoff as the WEM approach jointly models the
haplotype frequencies and haplotype risks, and
thus has more parameters (eight more, to be exact)
than the EM approach. Although the EM ap-
proach yields more bias as b increases, it yields a
smaller MSE than the WEM approach. The tree
approach reduces some bias, as it takes disease
status into account, and yields a smaller sampling
variance than the WEM approach. This is prob-
ably because the tree algorithm does model
selection inherently when building a tree, thus
incurs less parameters than the WEM approach.
For this particular set of parameters, the tree
approach yields the smallest MSE. For other SNPs,
we found a similar pattern that the WEM
approach is most effective in eliminating bias
with a cost of large variance. The magnitude of
improvement and the comparison between the
three methods vary with SNPs. Interestingly, the
EM and the tree approach produce a smaller
sampling variance and RMSE than the true data.
Further inspection of simulation results suggests
that the imputation of missing data always
shrinks the parameter estimates slightly toward
null. This shrinkage effect may lower the sam-
pling variance, and thus generate a smaller RMSE
than using the true data.

TABLE III. Mean imputation errors in the simulated data of four SNPs on the PGR gene

10% missing data 20% missing data

Approach SNP1 SNP2 SNP3 SNP4 SNP1 SNP2 SNP3 SNP4

b5 0
Naivea 0.625 0.596 0.568 0.449 0.625 0.595 0.567 0.449
EM 0.412 0.390 0.243 0.379 0.427 0.407 0.271 0.385
WEM 0.412 0.390 0.243 0.379 0.427 0.406 0.271 0.385
Tree 0.440 0.397 0.260 0.399 0.461 0.411 0.292 0.415

b5 1
Naive 0.627 0.589 0.560 0.441 0.627 0.589 0.560 0.441
EM 0.433 0.383 0.245 0.369 0.448 0.399 0.273 0.375
WEM 0.415 0.381 0.241 0.369 0.431 0.396 0.269 0.375
Tree 0.449 0.389 0.263 0.389 0.471 0.407 0.296 0.403

b5 2
Naive 0.628 0.587 0.557 0.438 0.627 0.588 0.557 0.438
EM 0.443 0.380 0.246 0.365 0.457 0.397 0.273 0.371
WEM 0.386 0.375 0.233 0.363 0.402 0.391 0.257 0.370
Tree 0.422 0.388 0.262 0.385 0.443 0.398 0.292 0.399

Each number is the average of imputation error probabilities from 1,000 simulations.
aThis method imputes the missing by the marginal distribution of available SNP genotypes and ignores other SNPs.
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Cope et al. [2005] estimated the odds ratios for
the allele effect of 10 SNPs ignoring missing data
[see Table III in Cope et al., 2005]. They concluded
that 7 out of 10 SNPs are associated with DD at
a significance level of 0.05. Haplotype analysis
using all 10 SNPs yields approximately 50
haplotypes, none of which is significantly asso-
ciated with disease (results not shown). The large
number of haplotypes is produced by weak
correlation due to removal of redundant SNPs
and irregular LD structure [see Table II in Cope
et al., 2005]. In this situation, a SNP-based
regression approach seems to be a better strategy.
We carried out a multiple imputation analysis to
see whether imputation of missing data influences
their conclusion. We first verified that the SNP
effect is indeed additive, and applied the uni-
variate logistic regression (5) to each SNP. Due to
space limit, we only show the results for four
SNPs (rs4504469, rs6911855, rs6939068, and
rs6935076). SNPs rs6911855 and rs6939068 are in
tight linkage (r2 5 0.79), whereas rs4504469 and

rs6935076 are in a weak LD with the other SNPs.
Table V compares the log-odds ratio estimates and
P-values after multiple imputation. For SNPs
rs6911855 and rs6939068, standard errors become
smaller and point estimates are enlarged by both
the EM and WEM imputations. Hence P-values
are smaller than in the complete-case analysis.
This is probably driven by the 25 proband cases,
who have both SNPs missing. The WEM approach
seems to capture the missing pattern depending
on the disease status, and therefore yields more
significant results than the other approaches
(P-value of rs6939068o0.05). For SNPs rs4504469,
rs6911855, the imputation has little effect on the
standard errors. The effect of the sample size
increment after imputation seems to be canceled
by the extra variability raised by multiple imputa-
tion. This is perhaps because the rate of missing
values is small for these loci and LD is weak.

To compare the accuracy of the three imputation
approaches, we randomly removed an extra 5%,
10%, and 15% of the SNPs from the data set of

TABLE IV. The effect of different imputation approaches on association parameters in the simulation study
with 10% missing data

Marginala Interactionb

Approach Bias SD(â1) RMSEc %d Bias SD(ĝ1) RMSEc %d

b5 0
True data �0.007 0.181 0.181 — �0.017 0.265 0.265 —
Complete-

case
�0.008 0.191 0.192 — �0.034 0.305 0.307 —

EM �0.006 0.179 0.179 13.1 �0.021 0.258 0.259 28.8
WEM �0.007 0.185 0.185 7.2 �0.021 0.274 0.274 20.3
Tree �0.006 0.179 0.179 13.1 �0.020 0.257 0.257 29.9

b5 1
True data �0.014 0.193 0.193 — �0.017 0.300 0.301 —
Complete-

case
�0.012 0.201 0.202 — �0.033 0.346 0.347 —

EM 0.016 0.187 0.187 14.3 �0.051 0.289 0.294 28.2
WEM �0.009 0.196 0.196 5.8 �0.024 0.309 0.310 20.1
Tree 0.006 0.188 0.188 13.4 �0.038 0.290 0.293 28.7

b5 2
True data �0.008 0.215 0.215 — �0.011 0.315 0.315 —
Complete-

case
�0.007 0.231 0.231 — �0.016 0.350 0.350 —

EM 0.047 0.209 0.214 14.1 �0.066 0.301 0.308 22.5
WEM �0.007 0.222 0.222 7.6 �0.023 0.326 0.327 12.7
Tree 0.026 0.212 0.213 14.9 �0.039 0.301 0.304 24.6

aMarginal effect: logistic model logit(Pr(D|SNPs)) 5 a01a1 x was fitted; x is the continuous coding variable for SNP3. The true value of the
parameter is obtained by fitting the model to the population data before data were made missing; Bias, SD, and RMSE are computed from
1,000 iterations.
bInteraction: logistic model logit(Pr(D|SNPs)) 5 g01g1 x11g2 x21g3 x1 x2 was fitted. x1 and x2 are the 0/1/2 continuous coding variables for
SNP2 and SNP3.
csquare root of mean square error (MSE).
d% reduction of MSE compared the complete-case analysis.
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Cope et al. [2005]. Table VI shows the comparison
of imputation error probabilities for the additional
missing SNPs stratified by SNP, imputation
approach, and missing percentage. Similar to
Table III, all three approaches work much better
than the naive approach. The WEM approach
performs consistently better than the EM and tree
approaches, although the improvement of WEM
over EM is for most scenarios less than 1%. This,
again, may be explained by the weak LD among
the 10 SNPs, as haplotype ambiguity is so
dominant that knowing case-control status does
not gain much in imputation. On the other hand,
the accuracy of the tree approach is only 1–2%
lower than two haplotype-based approaches,
suggesting that in practice the tree approach
may be sufficiently accurate to characterize the
inter-SNP correlation in a modest LD block.

Table VII shows the biases, sample standard
deviations and MSE for marginal effects and
the interaction of two SNPs found to be most
significantly associated with DD in Cope et al.
[2005]. These statistics are conditional on the
original data from Cope et al. [2005]. That is, the
‘‘true values’’ of the parameters are obtained from
the original data with the original missing values
and no imputation. Likewise, the ‘‘Complete-
case’’ here refers to data sets with both the
original missing SNPs and extra missing data
removed, again serving as the baseline for
comparison. The first eight columns compare the
estimates of SNP marginal effects. Cope et al.
[2005] found a significant interaction between
rs4504469 and rs6935076. In the last four columns
in Table VII, we compared the effects of imputa-
tion on the interaction parameter in the logistic
regression model (6). It appears that all three
imputation approaches significantly improve the
SD and RMSE over the complete-case analysis.
The reduction of MSE is 20–30% in estimating the
marginal effect of SNP rs4504469, 40–50% in
estimating the marginal effect of SNP rs6935076,
and 50–60% in estimating the interaction. The
WEM approach is effectively unbiased with the
cost of increased sample variance, which is similar
to the results in Table IV. The variance of WEM
estimators for interaction is apparently much
larger than other two approaches, so that their
MSEs are the worst. This is probably caused by
the extra parameters (approximately 50) in mod-
eling haplotype-disease association. Interestingly,
the tree approach yields a smaller variance than
EM and achieves the best performance in MSE in
the majority of scenarios. This seems contradictoryT
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to the comparison in Table VI, where the tree
approach makes more imputation errors than the
other two approaches. Since we count 1 error
whenever the imputed SNP genotype is different
from the true genotype, the impact of different
genotype errors on association parameter esti-
mates may be different. For example, imputing a
missing SNP with true genotype ‘‘2’’ to be ‘‘1’’ has
less effect than imputing it to be ‘‘0’’. It is possible
that the impact of imputation errors on estimating
association parameters is smaller in the tree
approach than that in the EM approach, since
the former use case-control status in the imputa-
tion. Taken collectively, all three imputation
methods improve MSE considerably in compar-
ison to complete-case analysis. The tree approach
seems to have an advantage in dealing with 10
SNPs in weak correlation. It offers bias reduction
without incurring too much variance.

DISCUSSION

Despite the fact that missing SNPs are quite
common in genetic association studies, the impact
of imputation on SNP association inference has
not been adequately studied. In this article, we
developed and assessed the impact of haplotype-
based and the tree-based imputation approaches
with case-control data. Our results suggest that
in general there is substantial benefit from
imputation over the commonly used complete-
case analysis when association studies are ana-
lyzed using SNPs as predictors. As we expected,
the benefit of imputation is greater in estimating

interaction parameters than in estimating margin-
al parameters (Tables IV and VII).

Imputing missing SNPs usually helps associa-
tion inference in increasing the efficiency without
adding noticeable bias, at the price of some extra
variability from the uncertainty in the imputation.
With LD structure existing between SNPs, the
added sample size usually outweighs the imputa-
tion uncertainty and the standard error decreases.
This is seen in our simulation study (Tables IV)
and the data application (Table VII). The advan-
tage of imputation can be substantial when a
regression model with multiple SNPs is involved
(Tables IV and VII). We acknowledge that in some
cases where the missingness rate is low and LD is
weak, the imputation may not help to gain
efficiency for marginal parameters (Table V,
rs4504469 and rs6935076). On the other hand,
imputation of the missing SNPs could also help to
correct bias. In our data application, the fractions
of missing values for SNPs rs6911855 and
rs6939068 differ between cases and controls. The
parameter estimates and association inferences for
these two SNPs were changed greatly by multiple
imputation using the WEM approach (Table V),
indicating complete-case analysis may cause bias
in this scenario. Our overall assessment is that
performing multiple imputation up-front yields
better inferences than the complete-case analysis
in SNP association studies, particularly when
regression models with multiple SNPs are in-
volved.

Haplotype analysis is becoming increasingly
popular in genetic association studies, whereas
tree-based approaches start to draw attention in

TABLE VI. The comparison of imputation error probabilities for the developmental dyslexia data

Approach rs4504469 rs6911855 rs6939068 rs6935076 Average of 10 SNPs

5% missing
Naive 0.609 0.117 0.133 0.596 0.486
EM 0.367 0.014 0.028 0.300 0.199
WEM 0.364 0.012 0.028 0.296 0.197
Tree 0.379 0.032 0.034 0.324 0.223

10% missing
Naive 0.609 0.114 0.137 0.597 0.486
EM 0.372 0.020 0.035 0.309 0.206
WEM 0.367 0.019 0.033 0.307 0.205
Tree 0.390 0.039 0.044 0.339 0.235

15% missing
Naive 0.610 0.114 0.136 0.595 0.486
EM 0.375 0.024 0.040 0.319 0.214
WEM 0.368 0.024 0.038 0.314 0.211
Tree 0.396 0.041 0.049 0.353 0.248

Note: The numbers are the averages of imputation error probabilities from 200 simulations.
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studies with a large number of SNPs. Haplotypes
can be used directly to model the association, or
indirectly to impute SNPs of SNPs are used as
predictors. To our knowledge, this is the first
paper directly studying haplotype and tree-based
imputation approaches. The imputation accuracy
can be viewed as an indicator of how well the
inter-SNP correlation structure is captured by
non-parametric tree regression. Evidently, the tree
approach produces slightly more imputation
errors than the haplotype approaches. However,
its advantages are apparent: it is computationally
efficient, it easily accommodates disease status,
extra covariates, and a large number of SNPs. In
many cases (Tables IV and VII), the tree approach
even outperforms the EM approach in both bias
reduction and MSE. In many genetic epidemiolo-
gical studies subjects complete a questionnaire,
which may contain dozens of relevant environ-
mental and demographic variables. The tree
algorithm can handle an arbitrary number of
these variables, as the splits in the decision trees
are completely data driven. Computing time so far
has never been an issue in our analyses (typical
data we see have up to a few thousand observa-
tions and a few hundred variables). Considering
the increasing number of genome-wide SNP
association studies carried out today, we believe
that the tree approach provides a competitive
alternative for the imputation of missing SNP
values.

For the benefit of imputation, the information of
disease status is secondary to the correlation
between adjacent SNPs in the data we studied.
That is perhaps why the improvement of the
WEM approach over the EM approach is much
smaller compared to that of the EM approach over
naive imputation (Tables III and VI). In virtually
every situation we examined, the WEM approach
produces minimal bias. On the other hand, the
WEM approach incurs more variability than the
EM approach since it involves more parameters.
That said, we recognize that sometimes one may
prefer the unbiased estimates even if they have a
larger variance.

There are other algorithms available to recon-
struct haplotypes that can be used to impute the
missing SNPs. For example, PHASE employs an
MCMC approach to infer the haplotypes from
unphased genotypes, using priors based on
coalescent theory and taking account of the decay
of LD [Stephens et al., 2001; Stephens and Scheet,
2003]. However, PHASE, as well as other Bayesian
approaches, is designed for inferring haplotype

in a population and thus does not incorporate the
case-control status to estimate the haplotype
frequencies. This may introduce bias to associa-
tion parameter estimates after imputing the
missing SNPs, similarly to the EM algorithm.
We tried PHASE to impute the missing SNPs in
the DD data. The imputation accuracy was about
the same as the EM algorithm, yet the computing
time was significantly longer.

The methods presented here depend on the
assumption that SNP genotypes are missing at
random (MAR). However for some technologies, it
is not uncommon to have non-MAR data in SNP
genotypes. For example, the Dynamic model-based
(DM) algorithm [Di et al., 2005], the original
genotype calling algorithm for the Affymetrix Gene
Chip Human Mapping Arrays, has a larger fraction
of no calls among the heterozygous SNPs than the
homozygous SNPs (see for example, Table I of the
BRLMM technical manual, Affymetrix Corporation,
2006). The reason for this discrepancy is that the
DM algorithm assigns the genotype call AA
(homozygous), BB (homozygous), AB (heterozy-
gous), or no call if the pattern is ambiguous. As the
acceptance region for the heterozygous AB call is
‘‘wedged" between the acceptance regions for the
homozygous AA and BB calls, it is much harder for
the heterozygote to pass, resulting in a higher
missingness rate [Rafael Irizarry and Robert Welch,
personal communication]. Affymetrix recently pro-
posed the BRLMM algorithm [the BRLMM techni-
cal manual, Affymetrix Corporation, 2006], an
extension of RLMM algorithm [Rabbee and Speed,
2006]. This new algorithm improves the overall SNP
call rates and (supposably) eliminates the difference
between the call rates for homozygous and hetero-
zygous SNPs. That said, non-MAR creates bias in
parameter estimates, regardless of whether the
missing data are handled by complete-case analysis
or by multiple imputation. To account for non-
MAR, it is straightforward to derive a Bayesian-
type imputation model with a prior that acknowl-
edges different call rates for different genotypes.
For the imputation methods considered here, we
can compute the posterior probability of missing
SNPs by weighting the imputation probabilities
(using the prior) outputted from various methods.

ACKNOWLEDGMENTS

We want to thank Dr. Peter Holmans and the
other members of the developmental dyslexia
(DD) study for allowing us to use the case-control

701Imputation Methods in SNP Association Studies

Genet. Epidemiol. DOI 10.1002/gepi



data. We thank Rafael Irizarry, Robert Welch, and
Sonja Berndt for helpful discussions. We also
thank two reviewers for their constructive com-
ments. This research was supported in part by
NIH grants CA 74841 (J.Y.D., I.R., M.L.B., C.K.),
CA 105069 (I.R.), CA 53996 (M.L.B., C.K.), CA
90998 (M.L.B.), and HL 74745 (C.K.).

REFERENCES
Affymetrix Corporation. 2006. BRLMM: an improved genotype

calling method for the GeneChips human mapping 500 K array
set. http://www.affymetrix.com/support/technical

/product_up dates/brlmm_algorithm.affx

Barnby G, Abbott A, Sykes N, Morris A, Weeks DE, Mott R, Lamb
J, Bailey AJ, Monaco AP, and the International Molecular
Genetics Study of Autism Consortium (IMGSAC). 2005.
Candidate-gene screening and association analysis at the
autism-susceptibility locus on chromosome 16p: evidence of
association at GRIN2A and ABAT. Am J Hum Genet 76:
950–966.

Botstein D, Risch N. 2003. Discovering genotypes underlying
human phenotypes: past success for Mendelian disease, future
approaches for complex disease. Nat Genet Suppl 33:228–237.

Breiman L, Friedman JH, Olshen RA, Stone CJ. 1984. Classification
and Regression Trees. Belmont, CA: Wadsworth International
Group.

Brewster AM, Jorgensen TJ, Ruczinski I, Huang HY, Hoffman S,
Thuita L, Newschaffer C, et al. 2006. Polymorphisms of the DNA
repair genes XPD (Lys751Gln) and XRCC1 (Arg399Gln and
Arg194Trp): relationship to breast cancer risk and familial
predisposition to breast cancer. Breast Cancer Res Treat 95:73–80.

Bureau A, Dupuis J, Falls K, Lunetta KL, Hayward B, Keith TP,
Van E. 2005. Identifying SNPs predictive of phenotype using
random forests. Genet Epidemiol 28:171–182.

Cope N, Harold D, Hill G, Moskvina V, Stevenson J, Holmans P,
Owen MJ, et al. 2005. Strong evidence that KIAA0319 on
chromosome 6p is a susceptibility gene for developmental
dyslexia. Am J Hum Genet 76:581–591.

Cordell HJ, Clayton DG. 2002. A unified stepwise regression
procedure for evaluating the relative effects of polymorphisms
within a gene using case/control or family data: application to
HLA in type 1 diabetes. Am J Hum Genet 70:124–141.

De Vivo I, Huggins GS, Hankinson SE, Lescault PJ, Boezen M,
Colditz GA, Hunter DJ. 2002. A functional polymorphism
in the promoter of the progesterone receptor gene associated
with endometrial cancer risk. Proc Natl Acad Sci USA
99:12263–12268.

Di X, Matsuzaki H, Webster TA, Hubbell E, Liu G, Dong S, Bartell
D, et al. 2005. Dynamic model based algorithms for screening
and genotyping over 100 K SNPs on oligonucleotide micro-
arrays. Bioinformatics 21:1958–1963.

Epstein MP, Satten GA. 2003. Inference on haplotype effects in
case-control studies using unphased genotype data. Am J Hum
Genet 73:1316–1329.

Excoffier L, Slatkin M. 1995. Maximum-likelihood estimation
of molecular haplotype frequencies in a diploid population.
Mol Biol Evol 12:921–927.

Greenland S, Finkle W. 1995. A critical look at methods for
handling missing covariates in epidemiologic regression
analysis. Am J Epidemiol 142:1255–1264.

Harrell FE. 2001. Regression Modelling Strategies. New York:
Springer.

Hu N, Wang C, Hu Y, Yang HH, Giffen C, Tang ZZ, Han XY, et al.
2005. Genome-wide association study in esophageal cancer
using GeneChip Mapping 10 K Assay. Cancer Res 65:
2542–2546.

Kraft P, Cox DG, Paynter R, Hunter F, De Vivo I. 2005. Accounting
for haplotype uncertainty in matched association studies:
a comparison of simple and flexible techniques. Genet
Epidemiol 28:261–272.

Lake SL, Lyon H, Tantisira K, Silverman EK, Weiss ST, Laird NM,
Schaid DJ. 2003. Estimation and tests of haplotype-environ-
mental interaction when linkage phase is ambiguous. Hum
Hered 55:56–65.

Lin S, Cutler DJ, Zwick ME, Chakravarti A. 2002. Haplotype
inference in random population samples. Am J Hum Genet
71:1129–1137.

Little RJA, Rubin DB. 1987. Statistical Analysis With Missing Data.
New York: John Wiley & Sons.

Niu T, Qin ZS, Xu X, Liu JS. 2002. Bayesian haplotype inference for
multiple linked single nucleotide polymorphisms. Am J Hum
Genet 70:157–169.

Qin ZS, Niu T, Liu JS. 2002. Partition-ligation-expectation-
maximization algorithm for haplotype inference with single-
nucleotide polymorphisms. Am J Hum Genet 71:1242–1247.

Rabbee N, Speed TP. 2006. A genotype calling algorithm for
affymetrix SNP arrays. Bioinformatics 22:7–12.

Risch N. 1990. Linkage strategies for genetically complex traits. I.
Multi-locus models. Am J Hum Genet 46:222–228.

Risch N. 2000. Searching for genetic determinants in the new
millennium. Nature 405:847–856.

Ruczinski I, Kooperberg C, LeBlanc M. 2003. Logic regression.
J Comput Graph Stat 12:475–511.

Schafer JL. 1997. Analysis of Incomplete Multivariate Data.
London: Chapman & Hall.

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA.
2002. Score tests for association between traits and haplotypes
when linkage phase is ambiguous. Am J Hum Genet 70:
425–434.

Stephens M, Smith NJ, Donnelly P. 2001. A new statistical method
for haplotype reconstruction from population data. Am J Hum
Genet 68:978–989.

Stephens M, Scheet P. 2003. Accounting for decay of linkage
disequilibrium in haplotype inference and missing-data
imputation. Am J Hum Genet 76:449–462.

Stram DO, Leigh PC, Bretsky P, Freedman M, Hirschhorn JN,
Altshuler D, Kolonel LN, et al. 2003. Modeling and E-M
estimation of haplotype-specific relative risks from genotype
data for a case-control study of unrelated individuals. Hum
Hered 55:179–190.

Tanner MA, Wong WH. 1987. The calculation of posterior
distributions by data augmentation. JASA 82:528–540.

Therneau TM, Atkinson EJ. 1997. An introduction to recursive
partitioning using the RPART routines. Technical Report Series
no. 61, Department of Health Science Research, Mayo Clinic,
Rochester, Minnesota.

Zhang H, Bonney G. 2000. Use of classification trees for
association studies. Genet Epidemiol 19:323–332.

Zhao LP, Li SS, Khalid N. 2003. A method for the assessment of
disease associations with single-nucleotide polymorphism
haplotypes and environmental variables in case-control stu-
dies. Am J Hum Genet 72:1231–1250.

702 Dai et al.

Genet. Epidemiol. DOI 10.1002/gepi


