New Blood Pressure–Associated Loci Identified in Meta-Analyses of 475,000 Individuals

Aldi T. Kraja, DSc, PhD; James P. Cook, PhD; Helen R. Warren, PhD; Praveen Surendran, PhD; Chunyu Liu, PhD; Evangelos Evangelou, PhD; Alisa K. Manning, PhD; Niels Grarup, MD, PhD; Fotios Drenos, PhD; Xueling Sim, PhD; Albert Vernon Smith, PhD; Najaf Amin, DSc, PhD; Alexandra I.F. Blakemore, PhD; Jette Bork-Jensen, PhD; Ivan Brandslund, MD; Aliki-Eleni Farmaki, PhD; Cristiano Fava, MD, PhD; Teresa Ferreira, MD; Karl-Heinz Herzig, MD, PhD; Ayush Giri, PhD; Franco Giulianini, PhD; Megan L. Grove, MSc; Xiqing Guo, PhD; Sarah E. Harris, PhD; Christian T. Have, PhD; Aki S. Hovulimna, DSc; He Zhang, PhD; Marit E. Jørgensen, MD, PhD; AnneMari Käräjämäki, MD; Charles Cooperberg, PhD; Allan Linneberg, MD, PhD; Louis Little; Yongmei Liu, MD, PhD; Lori L. Bonnycastle, PhD; Yingchang Lu, MD, PhD; Reedik Mági, PhD; Anubha Mahajan, PhD; Giovanni Malerba, PhD; Riccardo E. Marioni, PhD; Hao Mei, PhD; Cristina Menni, PhD; Alanna C. Morrison, PhD; Sandosh Padmanabhan, MD, PhD; Walter Palmas, MD; Alaitz Poveda, PhD; Rainer Rauramaa, MD, PhD; Nigel William Rayner, PhD; Muhammad Riaz, PhD; Ken Rice, PhD; Melissa A. Richard, PhD; Jennifer A. Smith, PhD; Lorraine Southam, MSc; Alena Stančáková, MD, PhD; Kathleen E. Stirrups, PhD; Vinicius Tragante, PhD; Tiinamajja Tuomi, MD, PhD; Ioanna Tsoulaki, PhD; Tibor V. Varga, PhD; Stefan Weiss, PhD; Andrianos M. Yiorkas, MSc; Robin Young, PhD; Weihua Zhang, PhD; Michael R. Barnes, PhD; Claudia P. Cabrera, PhD; He Gao, PhD; Michael Boehnke, PhD; Eric Boerwinkle, PhD; John C. Chambers, MD, PhD; John M. Connell, MD; Cramer K. Christensen, MD, DMsc; Rudolf A. de Boer, MD, PhD; Ian J. Deary, PhD; George Dedoussis, PhD; Panos Deloukas, PhD; Anna F. Dominiczak, MD, FRCP; Marcus Dörr, MD; Roby Joehanes, PhD; Todd L. Edwards, PhD; Tõnu Esko, PhD; Myriam Fornage, PhD; Nora Franceschini, MD; Paul W. Franks, PhD; Giovanni Gambaro, MD, PhD; Leif Groop, MD, PhD; Göran Hallmans, MD, PhD; Torben Hansen, MD, PhD; Caroline Hayward, PhD; Oksa Heikki, MD, PhD; Erik Ingelsson, MD, PhD; Jaakko Tuomilehto, MD, PhD; Marjo-Riitta Jarvelin, MD, PhD; Sharon L.R. Kardia, PhD; Fredrik Karpe, MD, PhD; Jaspal S. Kooner, MD; Timo A. Lakka, MD, PhD; Claudia Langenberg, MD, PhD; Lars Lind, MD, PhD; Ruth J.F. Loos, PhD; Markku Laakso, MD, PhD; Mark I. McCarthy, MD; Olle Melander, MD, PhD; Karen L. Mohlke, PhD; Andrew P. Morris, PhD; Colin N.A. Palmer, PhD; Oluf Pedersen, MD, DMSc; Ozren Polasek, MD, MPH, PhD; Neil R. Poulter, FMedSci; Michael A. Province, PhD; Bruce M. Psaty, MD, PhD; Paul M. Ridker, MD; Jerome I. Rotter, MD; Igor Rudan, PhD; Veikko Salomaa, MD, PhD; Nilesh J. Samani, MD; Peter J. Sever, MD; Tea Skaaby, MD, PhD; Jeanette M. Stafford, MSc; John M. Starr, PhD; Pim van der Harst, MD, PhD; Peter van der Meer, MD, PhD; The Understanding Society Scientific Group, Cornelia M. van Duijn, PhD; Anne-Claire Vergnaud, PhD; Vilmundur Gudnason, MD, PhD; Nicholas J. Wareham, MD, PhD; James G. Wilson, MD; Cristen J. Willer, PhD; Daniel R. Witte, PhD; Eleletheria Zeggini, PhD; Danish Saleheen, PhD; Adam S. Butterworth, PhD; John Danesh, PhD; Folkert W. Asselbergs, MD, PhD; Louise V. Wain, PhD; Georges B. Ehret, MD; Daniel I. Casahan, PhD; Mark J. Caulfield, MD; Paul Elliott, PhD; Cecilia M. Lindgren, PhD; Daniel Levy, MD; Christopher Newton-Cheh, MD*; Patricia B. Munroe, PhD*; Joanna M.M. Howson, PhD*; on behalf of the CHARGE EXOME BP, CHD Exome+, Exome BP, GoT2D:T2DGenes Consortia, The UK Biobank Cardio-Metabolic Traits Consortium Blood Pressure Working Group†

Received April 4, 2017; accepted August 17, 2017.
†A list of all study participants is given in the Data Supplement.
*Dr. Newton-Cheh, Munroe, and Howson coauthors jointly supervised this project.
© 2017 American Heart Association, Inc.
Circ Cardiovasc Genet is available at http://circgenetics.ahajournals.org
DOI: 10.1161/CIRCGENETICS.117.001778
Background—Genome-wide association studies have recently identified >400 loci that harbor DNA sequence variants that influence blood pressure (BP). Our earlier studies identified and validated 56 single nucleotide variants (SNVs) associated with BP from meta-analyses of exome chip genotype data. An additional 100 variants yielded suggestive evidence of association.

Methods and Results—Here, we augment the sample with 140886 European individuals from the UK Biobank, in whom 77 of the 100 suggestive SNVs were available for association analysis with systolic BP or diastolic BP or pulse pressure. We performed 2 meta-analyses, one in individuals of European, South Asian, African, and Hispanic descent (pan-ancestry, ≈475,000), and the other in the subset of individuals of European descent (≈423,000). Twenty-one SNVs were genome-wide significant (P<5×10⁻⁸) for BP, of which 4 are new BP loci: rs9678851 (missense, SLC4A1/AP, rs7437940 (AFAP1), rs13303 (missense, STAB1), and rs1055144 (7p15.2). In addition, we identified a potentially independent novel BP-associated SNV, rs3416322 (missense, SYNPO2L) at a known locus, uncorrelated with the previously reported SNVs. Two SNVs are associated with expression levels of nearby genes, and SNVs at 3 loci are associated with other traits. One SNV with a minor allele frequency <0.01, (rs3025380 at DBH) was genome-wide significant.

Conclusions—We report 4 novel loci associated with BP regulation, and 1 independent variant at an established BP locus. This analysis highlights several candidate genes with variation that alter protein function or gene expression for potential follow-up. (Circ Cardiovasc Genet. 2017;10:e. DOI: 10.1161/CIRCGENETICS.117.001778.)

Key Words: blood pressure ■ exome ■ genetics ■ genotype ■ sample size

Materials and Methods

Samples

These analyses consisted of a meta-analysis of results from 3 independent publications, the CHARGE Exome BP consortium,4 European-led Exome consortia (contributory consortia, CHD Exome+, ExomeBP, and GoT2D:T2DGenes),9 and the BP analyses from the UK Biobank Cardiometabolic consortium10.

The CHARGE Exome BP consortium included 120,473 individuals of EUR descent from 15 cohorts, 21,503 individuals of African descent from 10 cohorts, and 4586 individuals of Hispanic ancestry from 2 cohorts as described previously.1 The European-led consortia included 165,276 individuals of EUR descent from 51 cohorts and 27,487 individuals of South Asian descent from 2 cohorts. The UK Biobank data included 140,886 unrelated individuals of EUR descent.11

All samples from the CHARGE and European-led Exome consortia were genotyped on Exome arrays that includes ≈242,000 markers >90% of which are nonsynonymous or splice variants, with enrichment for variants with minor allele frequency (MAF)<0.05. The UK Biobank used the Affymetrix UK Biobank Axiom Array (approximately 100,000) or the Affymetrix UK BiLEVE Axiom Array (approximately 50,000) to genotype ≈800,000 SNVs with subsequent imputation based on UK10K sequencing and 1000 Genomes reference panels. SNVs with an imputation threshold INFO score of <0.10 were filtered by the Warren et al.11 UK Biobank Nature Genetics 2017 article, from which the SNV association statistics for UK Biobank were provided.11

Guest Editor for this article was Christopher Semsarian, MBBS, PhD, MPH.

Correspondence to Aldi T. Kraja, DSc, PhD, Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, 4444 Forest Park Ave, 6th Floor, Room 6314, Campus Box 8506, St. Louis, MO 63108. E-mail aldi@wustl.edu
scores in the UK Biobank samples for the variants presented in the Table had INFO>0.6. SNVs that produced significant results are highlighted in green in Tables I and II in the Data Supplement, with a median INFO of 1. The studies by Surendran et al, Liu et al, and Warren et al examined genomic inflation factors in the contributing studies and the combined meta-analyses for each of the traits analyzed. Genomic inflation ranged between 1.04 and 1.11 in these contributing studies and therefore did not suggest that there were significant issues with population stratification. In the current analyses, 77 nonvalidated BP-associates SNVs were available for analysis across all 3 data sets.

Institutional review board approval was obtained from each participating cohort, and informed consent was obtained from all subjects. The UK Biobank study has approval from the North West Multi-Centre Ethics Committee and has Research Tissue Bank approval.

Phenotypes

Three BP traits were examined: SBP, DBP, and PP, where PP was calculated as the difference between SBP and DBP. For individuals taking antihypertensive therapies, 15 mm Hg and 10 mm Hg were added to the observed SBP and DBP, respectively, to estimate the BP that would be observed off antihypertensive therapy. The traits were approximately normally distributed, and no transformations of effects across the results from all contributing data sets (Table). Sixteen SNVs (PKN2, ARHGEF3, APA1, ANKK1B1, LOC1015375508, ZFAT, RAB25, DBH, SYNO2L, BDNF-AS, AGBL2, NOX4, CEP164, HOXC4, CFDP1, and COMT) were genome-wide significant in both PA and EUR samples. Two SNVs at SLCA41AP and 7p15.2, respectively, were significant only in the PA sample, and 3 SNVs at STAB1/NT5DC2, KDM5A, and LACTB only in the EUR sample. All the significant SNVs were common (MAFs≥0.19), except the SNV at the DBH locus (PA, MAF=0.0043). While this report was in preparation, 17 of these loci were published elsewhere. Four loci remain novel: rs9678851 (SLCA41AP, missense), rs7437940 (AP1, intron), rs13303 (STAB1, missense), and rs1055144 (7p15.2, noncoding transcript; Figure IA through ID in the Data Supplement). The SLCA41AP (rs9678851) was associated with SBP, and AP1 (rs7437940) and 7p15.2 (rs1055144) were associated with PP. We also observed a potentially new independent BP association (r²=0.001 in 1000G EUR and PA samples) at a recently published locus rs31463229 (SYNO2L, missense; Table; Figure IE in the Data Supplement). We used a conservative r²<0.1 threshold to minimize the possibility of an association because of correlation with a strongly associated established BP variant. Furthermore, conditional analyses within the ≈140,000 UK Biobank participants with comprehensive genomic coverage suggested that the association with SBP of rs34163229 was independent of the established SNV, rs4746172. Regional association plots in UK Biobank are provided in Figure IIA through IIE in the Data Supplement. Conditional analyses within the full data set was not possible given the targeted nature of the Exome array that makes claims of independence provisional. Twenty-two of the 77 SNVs had MAFs≥0.01, and 1 rs3025380, a missense variant makes claims of independence provisional. Twenty-two of the 77 SNVs had MAFs≥0.01, and 1 rs3025380, a missense variant

Statistical Analyses

In the CHARGE Exome BP consortium, in cohorts of unrelated individuals, single SNV association tests were implemented via linear regression in R/PLINK/SNPTEST. For family-based cohorts linear mixed-effects models in R was used to estimate kinship via R KINSHIP2 package and using the LMEKin function, to account for familial correlations (https://cran.r-project.org/web/packages/coxme/vignettes/lmekin.pdf; Supplemental Table 21 of Liu et al). The component studies of the European-led consortia (CHD Exome+, ExomeBP, and GoT2D:T2D genes) used linear regression as implemented in PLINK or linear mixed models as implemented in Genome-Wide Efficient Mixed Model Association or EPACTS (the Efficient Mixed-Model Association expedited, to test variants for association with BP traits. The UK Biobank study used linear regression models as implemented in SNPTEST. All studies assumed an additive allelic effects model. All studies adjusted for age, sex, body mass index, and additional cohort-specific covariates including (where appropriate) principal components of genetic ancestry, field centers, genotyping array, or case/control status for samples ascertained on case/control status for a non-BP trait. Both study-level QC and central QC were performed before the meta-analyses being performed. Full details are given in the reports from the component consortia.

At the consortium level, meta-analyses of cohort-level association results were performed independently within CHARGE-Exome and the European-led Exome consortia using inverse variance-weighted fixed effects meta-analysis. These meta-analyses results were combined with the UK Biobank association results using fixed-effects inverse variance-weighted meta-analysis as implemented in METAL. Two meta-analyses were performed, one pan-ancestry (PA; AA, European ancestry [EUR], Hispanic, South Asian) and the other of EUR ancestry. Statistical significance was set at genome-wide significance, P<5×10⁻⁸.

Results

Association results for the 77 SNVs with the 3 BP traits are shown in Table I in the Data Supplement for the PA (European, South Asian, African, and Hispanic descent) meta-analysis and in Table II in the Data Supplement for the EUR meta-analysis. Twenty-one of the 77 SNVs were associated with at least 1 BP trait with genome-wide significance, P<5×10⁻⁸ and concordant directions of effects across the results from all contributing data sets (Table). Sixteen SNVs (PKN2, ARHGEF3, APA1, ANKK1B1, LOC1015375508, ZFAT, RAB25, DBH, SYNO2L, BDNF-AS, AGBL2, NOX4, CEP164, HOXC4, CFDP1, and COMT) were genome-wide significant in both PA and EUR samples. Two SNVs at SLCA41AP and 7p15.2, respectively, were significant only in the PA sample, and 3 SNVs at STAB1/NT5DC2, KDM5A, and LACTB only in the EUR sample. All the significant SNVs were common (MAFs≥0.19), except the SNV at the DBH locus (PA, MAF=0.0043). While this report was in preparation, 17 of these loci were published elsewhere. Four loci remain novel: rs9678851 (SLCA41AP, missense), rs7437940 (AP1, intron), rs13303 (STAB1, missense), and rs1055144 (7p15.2, noncoding transcript; Figure IA through ID in the Data Supplement). The SLCA41AP (rs9678851) was associated with SBP, and AP1 (rs7437940) and 7p15.2 (rs1055144) were associated with PP. We also observed a potentially new independent BP association (r²=0.001 in 1000G EUR and PA samples) at a recently published locus rs34163229 (SYNO2L, missense; Table; Figure IE in the Data Supplement). We used a conservative r²<0.1 threshold to minimize the possibility of an association because of correlation with a strongly associated established BP variant. Furthermore, conditional analyses within the ≈140,000 UK Biobank participants with comprehensive genomic coverage suggested that the association with SBP of rs34163229 was independent of the established SNV, rs4746172. Regional association plots in UK Biobank are provided in Figure IIA through IIE in the Data Supplement. Conditional analyses within the full data set was not possible given the targeted nature of the Exome array that makes claims of independence provisional. Twenty-two of the 77 SNVs had MAFs≥0.01, and 1 rs3025380, a missense variant

Functional Annotation

Associated variants were annotated using Human Genome Build 38 dbSNP and Entrez Gene (The National Center for Biotechnology Information). We interrogated publically available gene expression regulatory features from the Encyclopedia of DNA Elements consortium and ROADMAP Epigenome projects using HaploReg and RegulomDB. Expression quantitative trait loci (eQTLs) were assessed using data from Genotype-Tissue Expression consortium, GRASP, Westra et al, Lappalainen et al, and STARNET. In addition, we used the FHS eQTL results from microarray-based gene and exon expression levels in whole blood from 5257 individuals.

We queried whether any of the 5 BP-associated SNVs were eQTLs for genes in the 5 BP-associated regions or whether they were in LD (r²>0.8) with any of the eQTLs for genes in these regions. Where putative eQTLs were identified, we verified the BP-associated SNVs were in LD (r²>0.8) with the top eQTL for that gene.

We interrogated publicly available GWAS databases through PhenoScanner, a curated database holding publicly available results from large-scale genome-wide association studies facilitating phenotype scans. We report results for SNVs with P values<5×10⁻⁸.

Capture HiC interactions were accessed from the Capture HiC Plotter (www.CHICP.org). Javierre et al used an intersection confidence score derived using CHICAGO software. The interactions with a CHICAGO score ≥5 in at least 1 cell type were considered as high-confidence interactions.
SLC4A1AP, rs9678851 (C>A, Pro139Thr) has MAF=0.46 and the C allele is associated with an increase of 0.23 mm Hg in SBP. This variant is correlated with 2 other missense variants in C2orf16 (rs1919126 and rs1919125, \(r^2=0.81 \) [EUR] based on 1000G,\(^{30}\) for both). At \(STAB1 \), the C allele of rs13303 (T>C, Met2506Thr, with MAF=0.44) is associated with an increase of 0.15 mm Hg in PP per minor allele in EUR. This residue is located in a conserved region of the protein\(^{31}\) (Table IV in the Data Supplement). The T allele of rs34163229, the new association at the \(SYNPO2L \) locus (G>T, Ser833Tyr, with MAF=0.15), is associated with an increase of 0.36 mm Hg in SBP per allele. This variant is in LD with another missense variant in \(SYNPO2L \) of rs34163229 (\(r^2=1, \) 1000G EUR).\(^{30}\) Using Polyphen2 (http://genetics.bwh.harvard.edu/pph2/index.shtml), the SNVs rs9678851 in \(SLC4A1AP \) and rs13303 in \(STAB1 \) were predicted to be benign, whereas rs34163229 in \(SYNPO2L \) was predicted to have a possible damaging impact on the corresponding human proteins' structure and function.

We interrogated publicly available eQTL data sets through Genotype-Tissue Expression consortium, the Encyclopedia of DNA Elements consortium, Roadmap projects, PhenoScanner,\(^{27}\) STARNET,\(^{25}\) and Framingham Heart Study\(^{26}\) to further highlight potential causal genes and mechanisms at each of the newly identified BP loci (Table III in the Data Supplement). The PP-associated SNV, rs13303, at \(STAB1 \) is correlated \((\times >0.8 \) 1000G EUR) with the top eQTLs for \(NTSDC2 \) in atherosclerotic lesion-free internal mammary artery, atherosclerotic aortic root, subcutaneous adipose, visceral abdominal fat, and liver tissues (all \(P<1x10^{-11} \)).\(^{25}\) The rs13303 was also associated with expression levels of \(NTSDC2 \) in EBV-transformed lymphocytes, transformed fibroblasts,\(^{25}\) and thyroid cells (Table III in the Data Supplement).\(^{21}\) The SBP-associated SNV at \(SYNPO2L \) (rs34163229) is correlated \((\times =0.86 \) in 1000G EUR) with the top eQTL (rs2177843) for \(MYOZ1 \) in heart atrial appendage tissue (Table III in the Data Supplement).\(^{21}\) The 5 new BP-associated SNVs were not in LD with the top eQTLs for these gene regions in whole blood in the Framingham Heart Study eQTL data. We also took the opportunity to assess whether the additional 15 recently established genome-wide significant BP-associated SNVs were eQTLs in the Framingham sample. Among the genome-wide significant BP SNVs, 3, rs4680 at \(COMT \), rs12680655 at \(ZFAT \), and rs10760260 at \(RABGAP1 \), were the top eQTL for the corresponding genes in whole blood (Table V in the Data Supplement). We also examined the 5 BP-associated SNVs in endothelial precursor cell Hi-C data (www.chicp.org)\(^{38,32}\) to explore long-range chromatin interactions. rs13303 was found to contact \(NISCH \) (score 17.34) and rs34163229 contacts \(USP54 \) (score 33.89). Finally, we assessed the association of the new BP-associated variants and their close proxies \((r^2>0.8 \) with cardiovascular disease risk factors, molecular metabolic traits, and clinical phenotypes using PhenoScanner, the NHGRI-EBI GWAS catalog and GRASP.\(^{27}\) We observed 5 of the newly discovered BP-associated SNVs to have genome-wide significant associations with other traits, including height (\(7p15.2)\),\(^{35}\) waist-to-hip ratio (\(STAB1 \) and \(7p15.2)\),\(^{34,35}\) triglycerides (\(SLC4A1P \)), adiponectin levels (\(STAB1)\),\(^{36}\) and atrial fibrillation (rs7915134 which has \(r^2=0.92 \) in the EUR 1000G samples with rs34163229 in \(SYNPO2L)\); Table III in the Data Supplement).

Of the 77 analyzed SNVs, from the original Exome array analyses, 56 SNVs were not genome-wide significant in the current analysis. With \(\approx 300 \) BP loci reported since the time of our analysis, we investigated whether any of the 56 SNVs that were not genome-wide significant for our meta-analysis have been reported as new BP-associated loci in any of the 3 recent publications.\(^{7,10,11}\) Twelve SNVs in our data set were found to be in LD \((r^2>0.1 \) in all 1000G populations) with the published variants at these loci.

Discussion

We identified genome-wide significant associations with BP for 21 additional SNVs from our original Exome array analyses\(^{8,9}\) by including UK Biobank participants to augment our sample size to \(\approx 475\,000 \) individuals. Four of the 21 BP-related loci we identified were novel, of which 2 were missense variants and 1 was a putative new independent signal at an established locus and was a missense variant.

A missense SNV in \(SLC4A1AP \) (rs9678851) marks the PP-associated locus on chromosome 2. \(SLC4A1AP \), encodes a solute carrier also known as kidney anion exchanger adapter protein although it is widely expressed in most Genotype-Tissue Expression consortium tissues.

At the new locus on chromosome 3 (rs13303), 3 potential candidate genes are highlighted: \(STAB1, NTSDC2, \) and \(NISCH. \) \(STAB1 \) encodes stabilin1, a protein known to endocytose low-density lipoprotein cholesterol, Gram-positive bacteria and Gram-negative bacteria, and advanced glycosylation end products.\(^{38,39}\) The gene product is also referred to as CLEVER-1, a common lymphatic endothelial and vascular endothelial receptor-1,\(^{40}\) which is expressed in macrophages.\(^{38,40}\) \(SNX17 \) interacts with \(STAB1 \) and is a trafficking adaptor of \(STAB1 \) in endothelial cells.\(^{38,42}\) The rs13303 is located 500-bp downstream of \(NTSDC2 \). This additional gene is highlighted through the association of rs13303 with expression of \(NTSDC2 \) in multiple tissues (Table III in the Data Supplement). \(NTSDC2 \) encodes the 5′-nucleotidase domain containing 2 protein. The gene is widely expressed, with higher levels observed in the heart and coronary artery, although its function is unknown. Finally, exploration of long-range chromatin interaction identified contact of the SNV region with the genetic sequence including the gene \(NISCH, \) which encodes the nonadrenergic imidazoline-1-receptor protein localized to the cytosol and anchored to the inner layer of the plasma membrane. This protein binds to the adapter insulin receptor substrate 4 (\(IRS4 \)) to mediate translocation of \(α5 \) integrin from the cell membrane to endosomes. In human cardiac tissue, this protein has been found to affect cell growth and death.\(^{43}\)

The PP-associated variant, rs7437940, on chromosome 4 is intronic to \(AFAP1 \) and is located in promoter histone marks
Table. Variants Associated With Systolic Blood Pressure, Diastolic Blood Pressure, or Pulse Pressure in the Pan-Ancestry or European-Ancestry Meta-Analyses in up to \(\approx 475000 \) Individuals

<table>
<thead>
<tr>
<th>rsID</th>
<th>Gene</th>
<th>Annotation</th>
<th>chr-pos</th>
<th>Trait</th>
<th>Meta</th>
<th>a1/2</th>
<th>Freq1</th>
<th>(\beta) (SE)</th>
<th>P Value</th>
<th>Dir HetP</th>
<th>N</th>
<th>UK-BioBank INFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs9678851</td>
<td>SLC4A1AP</td>
<td>Missense</td>
<td>2-27664167</td>
<td>S</td>
<td>PA</td>
<td>a/c</td>
<td>0.54</td>
<td>-0.23 (0.04)</td>
<td>1.07E-09</td>
<td>0.09</td>
<td>474569</td>
<td>1.0000</td>
</tr>
<tr>
<td>rs13303*</td>
<td>STAB1</td>
<td>Missense</td>
<td>3-52523992</td>
<td>P</td>
<td>EUR</td>
<td>t/c</td>
<td>0.44</td>
<td>-0.15 (0.03)</td>
<td>3.72E-08</td>
<td>0.11</td>
<td>418405</td>
<td>1.0000</td>
</tr>
<tr>
<td>rs7437940</td>
<td>AFAP1</td>
<td>Intronic</td>
<td>4-7885773</td>
<td>P</td>
<td>EUR</td>
<td>t/c</td>
<td>0.47</td>
<td>-0.15 (0.03)</td>
<td>2.88E-08</td>
<td>0.007</td>
<td>420616</td>
<td>0.9974</td>
</tr>
<tr>
<td>rs1055144</td>
<td>7p15.2</td>
<td>Nc-transcript</td>
<td>7-25831489</td>
<td>P</td>
<td>PA</td>
<td>a/g</td>
<td>0.19</td>
<td>0.19 (0.03)</td>
<td>3.47E-08</td>
<td>0.18</td>
<td>453880</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Recently reported loci

rs786906	PKN2	Synonymous	1-88805891	S, P	EUR	t/c	0.44	0.19 (0.03)	1.29E-12	0.08	422556	1.0000
rs3772219	ARHGEF3	Missense	3-56737223	S, D	EUR	a/c	0.68	0.25 (0.04)	2.00E-10	0.25	474558	1.0000
rs40060	ANKDD1B	3'UTR	5-75671561	D	EUR	t/c	0.65	-0.17 (0.02)	3.47E-12	0.46	422598	0.9938
rs972283	LOC105375508	Intronic	7-130782095	S, D	EUR	a/g	0.47	-0.23 (0.04)	9.12E-10	0.1	474569	1.0000
rs12680655	ZFAT	Missense	8-134625094	S, D	EUR	c/g	0.6	-0.29 (0.04)	1.62E-12	0.18	402962	1.0000
rs10760260	RABGAP1	Intronic	9-122951247	P	EUR	t/g	0.14	-0.25 (0.04)	2.88E-10	0.12	421223	0.9975
rs3025380	DBH	Missense	9-133636634	S, D	EUR	c/g	0.004	-1.14 (0.19)	1.23E-09	0.05	400891	0.8763
rs34163229*	SYNPO2L	Missense	10-73647154	S, P	EUR	t/g	0.15	0.36 (0.05)	1.15E-11	0.32	448759	1.0000
rs925946	BDNF-AS	Intronic	11-27645655	D	EUR	t/g	0.31	-0.16 (0.02)	7.08E-12	0.25	474564	1.0000
rs12286721	AGBL2	Missense	11-47679976	P	EUR	a/c	0.56	-0.17 (0.02)	3.39E-13	0.05	422593	1.0000
rs10765211	NOX4	Intronic	11-89495257	P	EUR	a/g	0.38	-0.19 (0.03)	6.46E-12	0.05	474550	0.9964
rs8258	CEP164	3'UTR	11-117412960	P	EUR	a/g	0.37	0.22 (0.03)	1.95E-15	0.003	422546	1.0000
rs11062385	KDM5A	Missense	12-318409	P	EUR	a/g	0.73	-0.17 (0.03)	2.69E-08	0.84	422563	1.0000
rs736889†	HOXC4	Intronic	12-54043968	S, P	EUR	t/g	0.69	0.36 (0.05)	1.58E-13	0.33	419905	0.6070
rs2729835*	LACTB	Missense	15-63141567	S	EUR	a/g	0.68	-0.24 (0.04)	1.29E-08	0.25	394656	1.0000
rs2865531	CFPD1	Intronic	16-75356418	S, P	EUR	a/t	0.6	0.42 (0.06)	2.14E-13	0.51	217419	0.9998
rs4680	COMT	Missense	22-19963748	P	EUR	a/g	0.51	0.16 (0.03)	2.24E-09	0.005	418385	1.0000

rsID, SNV name; gene, name of the closest gene or cytogenetic band based on Gene Entrez of NCBI; annotation, SNV annotation based on dbSNP of NCBI; chr-pos, chromosome-bp position in Human Genome build 38; trait, the blood pressure trait (diastolic blood pressure, systolic blood pressure, or pulse pressure) the variant is associated with; meta, the meta-analysis the variant is associated in, Pan-Ancestry or EURopean; A1/2, allele 1/allele 2; freq1, allele frequency for allele 1; \(\beta \) (SE), effect estimate, \(\beta \) and its SE for allele 1 from the corresponding meta-analysis; P value, P from meta-analysis; dir, direction of effect in each of the contributing consortia in the following order: EUROPEAN led Exome Consortia, UK-BIOBANK, and CHARGE-BP Consortium; HetP, P value of heterogeneity across the 3 contributing consortia; N, sample size for the trait and meta-analysis with the lowest P value; UK-BIOBANK INFO, a quality of imputation score in UK BIOBANK. For more details, see Tables I and II in the Data Supplement. D indicates diastolic blood pressure; P, pulse pressure; S, systolic blood pressure; and SNV indicates single nucleotide variant.

*Potential new signal at a recently reported locus (LD, \(r^2<0.1 \) with a published BP SNV).
†First report of this variant as genome-wide significant.
in right atrial tissue, based on regulatory chromatin states from DNase and histone ChIP-Seq in Roadmap Epigenomics Consortium (identified with HaploReg, Table IV in the Data Supplement).44 AFAP1 encodes actin filament–associated protein 1. This protein is thought to have a role in the regulation of actin filament integrity, and formation and maintenance of the actin network.45

At the locus on chromosome 10 (rs34163229), 2 candidate genes were highlighted (SYNPO2L and MYOZ1). SYNPO2L encodes synaptopodin like 2, which is not well characterized, and may play a role in modulating actin-based shape. The lead SNV is also associated with expression levels of MYOZ1 in heart appendage tissues. MYOZ1 encodes myozenin 1, an α-actinin and gamma filamin binding Z line protein predominantly expressed in skeletal muscle.46

At 2 loci (SLC4A1AP and SYNPO2L), we observed >1 missense variant in high LD (r2>0.8). Functional follow-up of these variants are needed to disentangle the causal variants. At the SLC4A1AP locus, there are 3 missense variants, none of which are predicted to be damaging. Two of these are in C2orf16 that is predicted to encode an uncharacterized protein. Current evidence is at the transcriptional level. Cellular assays comparing the function of SLC4A1AP with the missense variant may be developed or an animal model could be created and BP can be measured. In the first instance, a knockout model may be required, because of the predicted weak effects of the BP variants. At the SYNPO2L locus, the 2 missense variants are both in SYNPO2L, of which 1 is predicted damaging, cellular experiments testing functional effects of this variant alone or part of a haplotype maybe a good starting point.

In conclusion, we identified 4 new loci and 1 potential new SNV in a known locus, which influence BP variation and highlight specific genes and pathways that could potentially facilitate an improved understanding of BP regulation, and identify novel therapeutic targets to reduce the burden of cardiovascular disease.

Appendix

From the Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO (A.T.K., M.A.P.); Department of Biostatistics, University of Liverpool, United Kingdom (J.P.C., A.P.M.); Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (H.R.W., L.L., K.E.S., C.P.C., M.R.B., P.D., M.J.C., P.B.M.); National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, United Kingdom (H.R.W., M.R.B., C.P.C., P.D., M.J.C., P.B.M.); MRC/BHF Cardiovascular Epidemiology Centre, Department of Public Health and Primary Care (P.S., R.Y., A.S.B., J.D., J.M.M.H.), Department of Haematology (K.E.S.), Department of Public Health and Primary Care (D.S.), NIHR Blood and Transplant Research Unit in Donor Health and Genomics (J.D.) and British Heart Foundation, Cambridge Centre for Excellence, Department of Medicine (A.S.B., J.D.), University of Cambridge, United Kingdom; The Framingham Heart Study, MA (C.L., R.J., D.L.); The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (C.L., D.L.), Mathematical and Statistical Computing Laboratory, Center for Information Technology (R.J.), National Institutes of Health, Bethesda, MD; Department of Epidemiology and Biostatistics, School of Public Health (E.E., I.T., W.Z., H.G., J.C.C., M.-R.J., A.-C.V., P.E.), Section of Investigative Medicine, Department of Medicine (A.I.F.B., A.M.Y.), MRC-PHE Centre for Environment and Health (I.T., H.G., M.-R.J., P.E.), International Centre for Circulatory Health (N.R.P., P.J.S.), National Institute for Health Research Imperial College Healthcare NHS Trust Biomedical Research Unit (P.E.), Imperial College London, United Kingdom; Department of Hygiene and Epidemiology, University of Ioanna Medical School, Greece (E.E., I.T.); Center for Genomic Medicine (A.K.M., C.N.-C.), Cardiovascular Research Center, Massachusetts General Hospital (C.N.-C.); Department of Medicine (A.K.M., P.M.R., D.I.C.), Institute for Aging Research, Hebrew SeniorLife (R.J.), Harvard Medical School (P.M.R., D.I.C.), Boston, MA; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (N.G., J.B.-J., C.T.H., T.H., O.P.); Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, United Kingdom (F.D.); Centre for Cardiovascular Genetics, Institute of Cardiovascular Science (F.D.) and Faculty of Population Health Sciences (F.W.A.), University College London, United Kingdom; Department of Biostatistics and Center for Statistical Genetics (X.S., M.B.), Department of Internal Medicine, Division of Cardiovascular Medicine (H.Z., C.J.W.), Department of Epidemiology, School of Public Health (J.A.S., S.L.R.K.), Department of Computational Medicine and Bioinformatics (C.J.W.) and Department of Human Genetics (C.J.W.), University of Michigan, Ann Arbor; Saw Swee Hock School of Public Health, National University of Singapore (X.S.); Icelandic Heart Association, Kopavogur (A.V.S., V.G.); Faculty of Medicine, University of Iceland, Reykjavik (A.V.S., V.G.); Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands (N.A., C.M.v.D.); Department of Life Sciences, Brunel University London, United Kingdom (A.I.F.B., A.M.Y.); Department of Clinical Biochemistry (I.B.), Medical Department (C.K.C.), Lillebaelt Hospital, Vejle, Denmark; Institute of Regional Health Research, University of Southern Denmark, Odense (I.B.); Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece (A.-E.F., G.D.); Department of Clinical Sciences, University of Lund, Malmö, Sweden (C.F., O.M.); Department of Medicine (C.F.) and Department of Neuroscience, Biomedicine and Movement, Section of Biology and Genetics (G.M.), University of Verona, Italy; Wellcome Trust Centre for Human Genetics (T.F., A.M., N.W.R., L.S., M.I.M., C.M.L.), Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine (N.W.R., F.K., M.I.M.), and Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, United Kingdom (C.M.L.); Research Unit of Biomedicine and Biocenter of Oulu, University of...
Cambridge Biomedical Campus, United Kingdom (C.L., N.J.W.); Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Scotland, United Kingdom (C.N.A.P.); Faculty of Medicine, University of Split, Croatia (O.P.); Kaiser Permanente Washington Health Research Institute, Seattle, (B.M.P.); Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC (J.M.S.); Department of Public Health, Aarhus University, Denmark (D.R.W.); Danish Diabetes Academy, Odense, Denmark (D.R.W.); Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.S.); Centre for Non-Communicable Diseases, Karachi, Pakistan (D.S.); Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (G.B.E.); Cardiology, Department of Medicine, Geneva University Hospital, Switzerland (G.B.E.); and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge (C.M.L., C.N.-C.).

Acknowledgments
A detailed list of acknowledgments is presented in the Data Supplement, together with the full list of members of the contributing consortia.

Disclosures
Dr Chasman received funding for genotyping of the exome chip and collaborative scientific support from Amgen. Dr Caulfield is Chief Scientist for Genomics England, a United Kingdom government company. Dr Evangelou is a scientific advisor for Precision Wellness, Scientist for Genomics England, a United Kingdom collaborative scientific support from Amgen. Dr Caulfield is Chief

References
We analyzed 77 single nucleotide variants that remained of interest, but did not achieve genome-wide significance with blood pressure (BP) traits from a prior analysis of Exome chip genotypes. A meta-analysis of results from the CHARGE Exome Architecture of adult human height. Defining the role of common variation in the genomic and biological architecture of adult human height. Defining the role of common variation in the genomic and biological architecture of adult human height. Defining the role of common variation in the genomic and biological architecture of adult human height.
New Blood Pressure–Associated Loci Identified in Meta-Analyses of 475,000 Individuals

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Genetics can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Genetics is online at:
http://circgenetics.ahajournals.org/subscriptions/
Supplemental Table 1. Association of the 77 SNVs with BP in the pan-ancestry meta-analysis. Highlighted in green are SNVs with \(P \leq 5\times10^{-8} \) (equivalent to \(-\log_{10}P = 7.3\)). In yellow are highlighted the 21 BP findings. (See Excel Table)

Note: No-order number, table is ordered by chromosome and HG38 position; **rsID**-SNV name, **Gene Name**-gene name from the Entrez Gene of NCBI; **Variant role**-SNVs’ role as defined by the NCBI dbSNP database; **Chrom**- chromosome; position HG38 and position HG19- positions based on NCBI builds batch 138 (HG19) and batch 147 (HG38); **diffposneargene**- position distance of a SNV from the closest gene’s SNV in the NCBI dbSNP, if within the gene we assigned a 0 value; **Closest gene**- a gene name the same as Gene Name, when the SNV is within gene boundaries, in parenthesis when within 500KB of the closest gene, and in parenthesis with () _beyond_ when further intergenic; **Allele 1**-allele 1; **Allele 2**-allele 2; **Freq1**-allele frequency for Allele 1; **SBP beta** and its Standard Error as **SBP s.e.** followed by DBP and PP; **SBP direction**- direction of beta sign for contributing results in the following order: BP-EUROPEAN led Consortium, UK-BIOBANK and CHARGE-BP Consortium, similar for DBP and PP; followed by the same traits’ order for **loghetp**-\(-\log_{10}p\) of heterogeneity; **N-meta-sample**; and **SBP-meta - Log10p** for SBP, DBP and PP.

Supplemental Table 2. Association of the 77 SNVs for BP in the European ancestry meta-analysis. Highlighted in green are SNVs with \(P \leq 5\times10^{-8} \) (equivalent to \(-\log_{10}P = 7.3\)). In yellow are highlighted the 21 BP findings. (See separate Excel Table).

See Note above for Supplemental Table 1.

Supplemental Table 3. Association findings for new BP SNVs, including any associations with other traits and top ranked eQTLs with \(P < 5 \times 10^{-8} \). For the eQTL results we only report tissues and genes where the BP-associated SNV and the expression SNV are in high LD (\(r^2 > 0.8 \)). Sources of information were GWAS Catalog access on 1.12.2017, PhenoScanner 27 and GTex 46 (See separate Excel Table for referenced PMIDs).
Supplemental Table 4. Cis-regulatory features of new BP SNVs based on HaploReg, which is using among others information from epigenome of ENCODE and RoadMap projects. (See separate Excel Table).

Supplemental Table 5. cis-eQTL identified in the Framingham heart study generation 3 whole blood expression data (See separate Excel Table).
Supplemental Figures 1. Forest plots of 5 novel selected SNVs in association with BP. Depicted are the beta, 95% confidence interval around the beta for the overall meta-analysis and for each contributing consortium. The heterogeneity p-value is estimated from the overall meta-analysis. (a) The rs9678851 (missense) SLC4A1AP (SBP-Pan-ancestry, A=0.55)
(b) The rs13303 (missense) $STAB1$ (PP-EUR-ancestry, $T=0.44$)
(c) The rs7437940 (intronic) $AFAP1$ (PP-EUR & Pan-ancestry, $T=0.47$)
(d) The rs1055144 (nc-transcript) 7p15.2 (PP-Pan-ancestry, T=0.19)
(e) The rs34163229 (missense) SYNPO2L (SBP-Pan-ancestry, T=0.15)

for LocusZoom plots:

- Locus Zoom plots of region ±500kb from the reference SNV
- Showing results for the primary trait from the Mega-Exome analysis
- Association p-value results according to full UKB-EUR BP GWAS data
- LD calculated from UKB-EUR data for all UKB variants
- Grey points if LD has $r^2 < 0.1$
- All plots on same y-axis scale limits for equivalent comparison
- Significance threshold reference lines at 1×10^{-4} and 5×10^{-8}
Supplemental Figures 2a-e. LocusZoom plots of 5 novel selected SNVs in association with BP. They represent regional association plots based on only UK Biobank results. (a) The SLC4A1AP (rs9678851) for SBP (novel locus)
(b) The *STAB1* (rs13303) for PP (novel locus)
(c) The *AFAP1* (rs7437940) for PP (novel locus)
(d) The 7p15.2 (rs1055144) for PP (novel locus)
(e) The SYNPL2 (rs34163229) for SBP (secondary signal)
CHARGE EXOME BP

Cohort and Cohort Specific Acknowledgment

AGES This study has been funded by National Institutes of Health (NIH) contracts N01-AG-1-2100 and 271201200022C, the National Institute of Aging (NIA) Intramural Research Program, Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament). The study is approved by the Icelandic National Bioethics Committee, VSN: 00-063. The researchers are indebted to the participants for their willingness to participate in the study.

CARDIA The CARDIA Study is conducted and supported by the National Heart, Lung, and Blood Institute in collaboration with the University of Alabama at Birmingham (HHSN268201300025C & HHSN268201300026C), Northwestern University (HHSN268201300027C), University of Minnesota (HHSN268201300028C), Kaiser Foundation Research Institute (HHSN268201300029C), and Johns Hopkins University School of Medicine (HHSN268200900041C). CARDIA is also partially supported by the Intramural Research Program of the National Institute on Aging. Exome Chip genotyping was supported from grants R01-HL093029 and U01-HG004729 to MF. This manuscript has been reviewed and approved by CARDIA for scientific content.

CHS Cardiovascular Health Study: This CHS research was supported by the National Heart, Lung, and Blood Institute contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, R01HL120393, and R01HL130114 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org.

FamHS This study was supported in part by the NHLBI grant R01HL117078.

FHS This study is supported by NHLBI/NIH Contract #N01-HC-25195, NIH NIDDK R01 DK078616 and K24 DK080140, and by the Boston University School of Medicine.

HABC The Health ABC study is supported by NIA contracts N01AG62101, N01AG62103, and N01AG62106. The genome-wide association study was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences.

HRS This study is supported by the National Institute on Aging (U01 AG009740, RC2 AG036495, RC4 AG039029, R03 AG046389).

JHS We thank the Jackson Heart Study (JHS) participants and staff for their contributions to this work. The JHS is supported by contracts HHSN268201300046C, HHSN268201300047C, HHSN268201300048C, HHSN268201300049C, HHSN268201300050C from the National Heart, Lung, and Blood Institute and the National Institute on Minority Health and Health Disparities.

MESA This research was supported by the Multi-Ethnic Study of Atherosclerosis (MESA) contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-
95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169 and by grants UL1-TR-000040 and UL1-RR-025005 from NCRR. Funding for MESA Family was provided by grants R01-HL-071205, R01-HL-071051, R01-HL-071250, R01-HL-071251, R01-HL-071252, R01-HL-071258, R01-HL-071259, and UL1-RR-025005. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center.

BioME The Mount Sinai BioMe Biobank is supported by The Andrea and Charles Bronfman Philanthropies.

RS This study is supported by the Erasmus Medical Center and Erasmus University Rotterdam, The Netherlands Organization for Scientific Research (NWO), The Netherlands Organization for Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), The Netherlands Genomics Initiative, the Ministry of Education, Culture and Science, the Ministry of Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The contribution of inhabitants, general practitioners and pharmacists of the Ommoord district to the Rotterdam Study is gratefully acknowledged. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810, Netherlands Consortium for Healthy Ageing (NCHA). Exome-chip genotyping was supported by Biobanking and Biomolecular Research Infrastructure (BBMRI). We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters for their help in creating the GWAS database, and Karol Estrada and Maksim V. Struchalin for their support in creation and analysis of imputed data. Sarah Higgins, Michael Verbiest, Mila Jhamai and Manouschka Ganesh (for running the chips in the lab), and Carolina Medina-Gomez, Fernando Rivadeneira, Anis Abu-Seiris, Lizbeth Herrera, Lennart Karssen, and Marijn Verkerk (for QC, variant calling, and data handling of the exomechip).

SHIP We thank all SHIP and SHIP-TREND participants and staff members as well as the genotyping staff involved in the generation of the SNP data.

WGHS This study is supported by HLO43851 and HL080467 from the National Heart, Lung, and Blood Institute and CA047988 from the National Cancer Institute, the Donald W. Reynolds Foundation and the Foundation Leducq, with collaborative scientific support and funding for genotyping provided by Amgen.

WHI Supported by R21HL123677 and R56 DK104806-01A1 to NF.

WHI The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, and 44221.

CHD Exome+ Consortium

"CHD Exome+ Consortium" This work was funded by the UK Medical Research Council (G0800270), British Heart Foundation (SP/09/002), UK National Institute for Health Research Cambridge Biomedical
Research Centre, European Research Council (268834), European Commission Framework Programme 7 (HEALTH-F2-2012-279233) and Merck and Pfizer.

UK-Exome BP Consortium

Cohort and Cohort Specific Acknowledgment

"ASCOT (ASCOT_SC / ASCOT_UK)" This work was supported by Pfizer, New York, NY, USA, for the ASCOT study and the collection of the ASCOT DNA repository; by Servier Research Group, Paris, France; and by Leo Laboratories, Copenhagen, Denmark. We thank all ASCOT trial participants, physicians, nurses, and practices in the participating countries for their important contribution to the study. In particular we thank Clare Muckian and David Toomey for their help in DNA extraction, storage, and handling. This work forms part of the research programme of the NIHR Cardiovascular Biomedical Research Unit at Barts.

"ASCOT (ASCOT_SC / ASCOT_UK)" This work forms part of the research programme of the NIHR Cardiovascular Biomedical Research Unit at Barts and The London, Queen Mary University of London, UK.

1958BC We are grateful for using the British 1958 Birth Cohort DNA collection. Sample collection funded by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. Genotyping was funded by the Wellcome Trust.

"BRIGHT (CASES / CONTROLS)" This work was supported by the Medical Research Council of Great Britain (grant number G9521010D); and by the British Heart Foundation (grant number PG/02/128). A.F.D. was supported by the British Heart Foundation (grant numbers RG/07/005/23633, SP/08/005/25115); and by the European Union Ingenious HyperCare Consortium: Integrated Genomics, Clinical Research, and Care in Hypertension (grant number LSHM-C7-2006-037093). The BRIGHT study is extremely grateful to all the patients who participated in the study and the BRIGHT nursing team. We would also like to thank the Barts Genome Centre staff for their assistance with this project. This work forms part of the research programme of the NIHR Cardiovascular Biomedical Research Unit at Barts. We would also like to thank Louis Little, QMUL for support for this project.

"BRIGHT (CASES / CONTROLS)" This work was supported by Pfizer, New York, NY, USA, for the ASCOT study and the collection of the ASCOT DNA repository; by Servier Research Group, Paris, France; and by Leo Laboratories, Copenhagen, Denmark. We thank all ASCOT trial participants, physicians, nurses, and practices in the participating countries for their important contribution to the study. In particular we thank Clare Muckian and David Toomey for their help in DNA extraction, storage, and handling. This work forms part of the research programme of the NIHR Cardiovascular Biomedical Research Unit at Barts.

CROATIA-Korcula We would like to acknowledge the contributions of the recruitment team in Korcula, the administrative teams in Croatia and Edinburgh and the people of Korcula. Exome array genotyping was performed at the Clinical Research Facility Genetics Core at Western General Hospital, Edinburgh, UK.

"DIABNORD (GLACIER)" We are grateful to the study participants who dedicated their time and samples to these studies. We also thank the VHS, the Swedish Diabetes Registry and Umeå Medical Biobank staff for biomedical data and DNA extraction. We also thank M Sterner, G Gremsperger and P Storm for their expert technical assistance with genotyping and genotype data preparation. The current
study was funded by Novo Nordisk, the Swedish Research Council, Pålhlssons Foundation, the Swedish Heart Lung Foundation, and the Skåne Regional Health Authority (all to PWF).

EGCUT This study was supported by EU H2020 grants 692145, 676550, 654248, Estonian Research Council Grant IUT20-60, NIASC and EIT – Health and EU through the European Regional Development Fund (Project No. 2014-2020.4.01.15-0012 GENTRANSMED).

FINRISK97/02 VS was supported by the Finnish Foundation for Cardiovascular Research.

GS:SFHS We would like to acknowledge the contributions of the families who took part in the Generation Scotland: Scottish Family Health Study, the general practitioners and Scottish School of Primary Care for their help in recruiting them, and the whole Generation Scotland team, which includes academic researchers, IT staff, laboratory technicians, statisticians and research managers. Genotyping was performed at the Wellcome Trust Clinical Research Facility Genetics Core at Western General Hospital, Edinburgh, UK.

"GLACIER controls" We are indebted to the study participants who dedicated their time and samples to these studies. We J Hutiainen and Å Ågren (Umeå Medical Biobank) for data organization and K Enquist and T Johansson (Västerbottens County Council) for technical assistance with DNA extraction. We also thank M Sterner, G Gremsperger and P Storm for their expert technical assistance with genotyping and genotype data preparation. The current study was funded by Novo Nordisk, the Swedish Research Council, Pålhlssons Foundation, the Swedish Heart Lung Foundation, and the Skåne Regional Health Authority (all to PWF).

"GoDARTS (diabetics / non-diabetics)" We acknowledge the support of the Health Informatics Centre, University of Dundee for managing and supplying the anonymized data and NHS Tayside, the original data owner. We are grateful to all the participants who took part in the Go-DARTS study, to the general practitioners, to the Scottish School of Primary Care for their help in recruiting the participants, and to the whole team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses.

GRAPHIC NJS is supported by the British Heart Foundation and NJS is a NIHR Senior Investigator.

HELIC-MANOLIS This work was funded by the Wellcome Trust (098051) and the European Research Council (ERC-2011-StG 280559-SEPI). The MANOLIS study is dedicated to the memory of Manolis Giannakakis, 1978–2010. We thank the residents of the Mylopotamos villages for taking part. We thank the Sample Management and Genotyping Facilities staff at the Wellcome Trust Sanger Institute for sample preparation, quality control and genotyping.

LBC1921 We thank the LBC1921 cohort participants and team members who contributed to these studies. Phenotype collection was supported by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC), The Royal Society and The Chief Scientist Office of the Scottish Government. Genotyping was supported by Centre for Cognitive Ageing and Cognitive Epidemiology (Pilot Fund award), Age UK, and the Royal Society of Edinburgh. The work was undertaken by The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1). Funding from the BBSRC and Medical Research Council (MRC) is gratefully acknowledged.

LBC1936 We thank the LBC1936 cohort participants and team members who contributed to these studies. Phenotype collection was supported by Age UK (The Disconnected Mind project). Genotyping
was supported by Centre for Cognitive Ageing and Cognitive Epidemiology (Pilot Fund award), Age UK, and the Royal Society of Edinburgh. The work was undertaken by The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1). Funding from the BBSRC and Medical Research Council (MRC) is gratefully acknowledged.

LOLIPOP The LOLIPOP study is supported by the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the British Heart Foundation (SP/04/002), the Medical Research Council (G0601966,G0700931), the Wellcome Trust (084723/Z/08/Z) the NIHR (RP-PG-0407-10371), European Union FP7 (EpiMigrant, 279143) and Action on Hearing Loss (G51). We thank the participants and research staff who made the study possible.

MDC The authors acknowledge the Knut and Alice Wallenberg Foundation for its economic support of the SWEGENE DNA extraction facility. Source of funding: This study was supported by grants from the European Research Council (StG-282255) Swedish Medical Research Council, the Swedish Heart and Lung Foundation, the Medical Faculty of Lund University, Malmö. University Hospital, the Albert P. Ohlson Research Foundation, the Crafoord Foundation, the Ernhold Lundström Research Foundation, the Region Skane, Hulda and Conrad Mossfelt Foundation, King Gustaf V and Queen Victoria Foundation and the Lennart Hansson Memorial Fund.

NFBC1966 NFBC1966 and 1966 received financial support from the Academy of Finland (project grants 104781, 120315, 129269, 1114194, 24300796, Center of Excellence in Complex Disease Genetics and SALVE), University Hospital Oulu, Biocenter, University of Oulu, Finland (75617), NIHLM (MH063706, Smalley and Jarvelin), Juselius Foundation, NHLBI grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), NIH/NIMH (5R01MH63706:02), the European Commission (EURO-BLCS, Framework 5 award QLG1-CT-2000-01643), ENGAGE project and grant agreement HEALTH-F4-2007-201413, EU FP7 EurHEALTHAgeing -277849, the Medical Research Council, UK (G0500539, G0600705, G1002319, PrevMetSyn/SALVE) and the MRC, Centenary Early Career Award. The program is currently being funded by the H2020-633595 DynaHEALTH action and academy of Finland EGEA-project (285547). The DNA extractions, sample quality controls, biobank up-keeping and aliquoting was performed in the National Public Health Institute, Biomedicum Helsinki, Finland and supported financially by the Academy of Finland and Biocentrum Helsinki. We thank the late Professor Paula Rantakallio (launch of NFBCs), and Ms Outi Tornwall and Ms Minttu Jussila (DNA biobanking). The authors would like to acknowledge the contribution of the late Academian of Science Leena Peltonen.

OBB The Oxford Biobank is supported by the Oxford Biomedical Research Centre and part of the National NIHR Bioresource.

PIVUS PIVUS and ULSAM are supported by the Swedish Research Council, Swedish Heart-Lung Foundation, Swedish Diabetes Foundation and Uppsala University. The investigators express their deepest gratitude to the study participants. Genotyping and analysis was funded by the Wellcome Trust under awards WT064890, WT090532 and WT098017.

TWINSUK TwinsUK was funded by the Wellcome Trust; European Community’s Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR) Clinical Research Facility at Guy’s & St Thomas’ NHS Foundation Trust and NIHR Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. CM is funded by the MRC AimHY (MR/M016560/1) grant.
UHP UHP (LRGP) infrastructure is financed through various (semi-) governmental funding, genotyping by BBMRI. We thank participating inhabitants of "Leidsche Rijn" for sharing their data.

UHP F.W.A. is supported by the UCL Hospitals NIHR Biomedical Research Centre and by a Dekker scholarship (Junior Staff Member 2014T001) from the Dutch Heart Foundation

UKHLS These data are from Understanding Society: The UK Household Longitudinal Study, which is led by the Institute for Social and Economic Research at the University of Essex and funded by the Economic and Social Research Council. The data were collected by NatCen and the genome wide scan data were analysed by the Wellcome Trust Sanger Institute. Information on how to access the data can be found on the Understanding Society website https://www.understandingsociety.ac.uk/. The 'Understanding Society Scientific Group' include the following: Understanding Society Scientific Group: Michaela Benzeval, Jonathan Burton, Nicholas Buck, Annette Jäckle, Meena Kumari, Heather Laurie, Peter Lynn, Stephen Pudney, Birgitta Rabe, Shamit Saggar, Noah Uhrig, Dieter Wolke.

GoT2D Consortium

Cohort and Cohort Specific Acknowledgment

ADDITION The Danish Diabetes Academy is funded by the Novo Nordisk Foundation. The ADDITION-DK study was supported by the National Health Service in the counties of Copenhagen, Aarhus, Ringkøbing, Ribe, and South Jutland; the Danish Council for Strategic Research; the Danish Research Foundation for General Practice; Novo Nordisk Foundation; the Danish Center for Evaluation and Health Technology Assessment; the Diabetes Fund of the National Board of Health; the Danish Medical Research Council; and the Aarhus University Research Foundation. ADDITION-DK has been given unrestricted grants from Novo Nordisk A/S, Novo Nordisk Scandinavia AB, Novo Nordisk UK, ASTRA Denmark, Pfizer Denmark, GlaxoSmithKline Pharma Denmark, Servier Denmark A/S, and HemoCue Denmark A/S. The ADDITION-PRO study was funded by an unrestricted grant from the European Foundation for the Study of Diabetes/Pfizer for Research into Cardiovascular Disease Risk Reduction in Patients with Diabetes (74550801), by the Danish Council for Strategic Research and by research and equipment funds from Steno Diabetes Center.

ADDITION The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk).

DPS The DPS has been financially supported by grants from the Academy of Finland (117844 and 40758, 211497, and 118590 (MU); The EVO funding of the Kuopio University Hospital from Ministry of Health and Social Affairs (5254), Finnish Funding Agency for Technology and Innovation (40058/07), Nordic Centre of Excellence on 'Systems biology in controlled dietary interventions and cohort studies, SYSDIET (070014), The Finnish Diabetes Research Foundation, Yrjö Jahnsson Foundation (56358), Sigrid Juselius Foundation and TEKES grants 70103/06 and 40058/07.

"DR's EXTRA Study" The DR's EXTRA Study was supported by grants to Rainer Rauramaa by the Ministry of Education and Culture of Finland (627;2004-2011), Academy of Finland (102318; 123885), Kuopio University Hospital, Finnish Diabetes Association, Finnish Heart Association, Päivikki and Sakari Sohling Foundation and by grants from European Commission FP6 Integrated Project (EXGENESIS); LSHM-CT-2004-005272, City of Kuopio and Social Insurance Institution of Finland (4/26/ 2010).
"FIN-D2D 2007" The FIN-D2D 2007 study was supported by funds from the hospital districts of Pirkanmaa; Southern Ostrobothnia; North Ostrobothnia; Central Finland and Northern Savo; the Finnish National Public Health Institute; the Finnish Diabetes Association; the Ministry of Social Affairs and Health in Finland; Finland’s Slottery Machine Association; the Academy of Finland [grant number 129293] and Commission of the European Communities, Directorate C-Public Health [grant agreement no. 2004310].

FUSION The FUSION study was supported by DK093757, DK072193, DK062370, and 1Z01 HG000024.

"Health 2006/2008" Health 2006: The Health2006 was financially supported by grants from the Velux Foundation; The Danish Medical Research Council, Danish Agency for Science, Technology and Innovation; The Aase and Ejner Danielsens Foundation; ALK-Abello A/S, Hørsholm, Denmark, and Research Centre for Prevention and Health, the Capital Region of Denmark. Health 2008: This work was supported by the Timber Merchant Vilhelm Bang’s Foundation, the Danish Heart Foundation (Grant number 07-10-R61-A1754-B838-22392F), and the Health Insurance Foundation (Helsefonden) (Grant number 2012B233).

"Health 2006/2008" The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk).

Inter99 The Inter99 was initiated by Torben Jørgensen (PI), Knut Borch-Johnsen (co-PI), Hans Ibsen and Troels F. Thomsen. The steering committee comprises the former two and Charlotte Pisinger. The study was financially supported by research grants from the Danish Research Council, the Danish Centre for Health Technology Assessment, Novo Nordisk Inc., Research Foundation of Copenhagen County, Ministry of Internal Affairs and Health, the Danish Heart Foundation, the Danish Pharmaceutical Association, the Augustinus Foundation, the Ib Henriksen Foundation, the Becket Foundation, and the Danish Diabetes Association.

Inter99 The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk).

METSIM The METSIM study was supported by the Academy of Finland (contract 124243), the Finnish Heart Foundation, the Finnish Diabetes Foundation, Tekes (contract 1510/31/06), and the Commission of the European Community (HEALTH-F2-2007 201681), and the US National Institutes of Health grants DK093757, DK072193, DK062370, and 1Z01 HG000024.

SDC The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk).

"Vejle (Cases and controls)" The Vejle Diabetes Biobank was supported by The Danish Research Council for Independent Research.

GoT2D Funding for the GoT2D and T2D-GENES studies was provided by grants NIH U01s DK085526, DK085501, DK085524, DK085545, and DK085584 (Multiethnic Study of Type 2 Diabetes Genes) and DK088389 (Low-Pass Sequencing and High-Density SNP Genotyping for Type 2 Diabetes).
GoT2D Genotyping of the METSIM and DPS studies, and part of the FUSION study, was conducted at the Genetic Resources Core Facility (GRCF) at the Johns Hopkins Institute of Genetic Medicine.

GoT2D The Broad Genomics Platform for genotyping of the FIN-D2D 2007, FINRISK 2007, DR'sEXTRA, and FUSION studies.

UK-Biobank

This research has been conducted using the UK Biobank Resource under Application Number 236. British Heart Foundation grant SP/13/30111 supported the project Large-scale comprehensive genotyping of UK Biobank for cardiometabolic traits and diseases: UK CardioMetabolic Consortium (UKCMC).

Personal acknowledgements

Folkert W Asselbergs is supported by the UCL Hospitals NIHR Biomedical Research Centre and by a Dekker scholarship (Junior Staff Member 2014T001) from the Dutch Heart Foundation

Fotios Drenos wishes to acknowledge the MRC Unit at the University of Bristol (MC_UU_12013/1-9)

Paul Elliott is an NIHR Senior Investigator and acknowledges support from the Biomedical Research Centre award to Imperial College Healthcare NHS Trust. Paul Elliott also acknowledges support from the MRC-PHE Centre for Environment and Health (MR/L01341X/1) and the Health Protection Research Unit in Health Impact of Environmental Hazards (HPRU-2012-10141). This work used the computing resources of the UK MEDical BIOinformatics partnership (UK MED-BIO) which is supported by the MRC (MR/L01632X/1).

Cecilia M.Lindgren is funded by the Wellcome Trust (086596/Z/08/Z) and the Li Ka Shing Foundation

Mark I McCarthy is a Wellcome Trust Senior Investigator (WT098381, WT090532); and a National Institute of Health Research Senior Investigator.

Andrew P Morris is a Wellcome Trust Senior Research Fellow in Basic Biomedical Science (grant number WT098017).

Patricia B Munroe, M.J.C, H.R.W wish to acknowledge the NIHR Cardiovascular Biomedical Research Unit at Barts and The London, Queen Mary University of London, UK for support.

Peter Sever is an NIHR Senior Investigator and acknowledges support from the Biomedical Research Centre award to Imperial College Healthcare NHS Trust.
CHARGE+ Exome Chip Blood Pressure Consortium

Affiliations

1Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, USA.
2Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA.
3The Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
4Division of Statistical Genomics, Department of Genetics & Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
5Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
6Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA.
7Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
8Department of Biostatistics, University of Washington, Seattle, WA, USA.
9Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston TX, USA.
10The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
11DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany.
12Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany.
13Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA.
14Columbia University Medical Center, 622 West 168th Street, PH 9 East, 107, New York, NY, USA.
15George Washington University School of Medicine and Health Sciences, Washington DC, USA.
16Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
17Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, Rayne Building University College London, London, WC1E 6JF, UK.
Department of Medicine, Harvard Medical School, Boston, MA, USA.
Northwestern University School of Medicine, Chicago, IL, USA.
Departments of Human Genetics, University of Michigan, Ann Arbor MI, USA.
Departments of Internal Medicine, University of Michigan, Ann Arbor MI, USA.
Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
Neuroepidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.
Institute of Physiology, University of Greifswald, Greifswald-Karlsburg, Germany.
DZD (German Center for Diabetes Research), Site Greifswald, Germany.
Institute for Community Medicine, University Medicine Greifswald, Site Greifswald, Germany.
Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.
School of Medicine, National Yang-Ming University, Taipei, Taiwan.
School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan.
School of Medicine, National Defense Medical Center, Taipei, Taiwan.
Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.
Epidemiology & Prevention Center for Genomics and Personalized Medicine Research, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, USA.
Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.
Harvard Medical School, Boston MA, USA
Department of Epidemiology, University of Washington, Seattle, WA, USA.
Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Departments of Pediatrics and Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA.
Department of Health Services, University of Washington, Seattle, WA, USA.
Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA.
The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Cardiology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil, 4,1211 Genève 14 Switzerland.
Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
CHD Exome+ Consortium

Praveen Surendran1, Robin Young1, Daniel R. Barnes1, James R. Staley1, Daniel F. Freitag1, Sune Fallgaard Nielsen2, Asif Rasheed3, Maria Samuel3, Wei Zhao4, Jukka Kontto5, Markus Perola5,6,7, Muriel Caslake8, Anton JM. de Craen9, Stella Trompet8,9,10, Maria Uriu-Nickelsen11, Anders Malarstig12, Dermot F. Reilly13, Maarten Hoek14, Thomas Vogt14,15, J Wouter. Jukema11,16, Naveed Sattar17, Ian Ford8, Chris J. Packard8, Dewan S. Alam18, Abdulla al Shafi. Majumder19, Emanuele Di Angelantonio1,20, Rajiv Chowdhury1, Philippe Amouyel21,22,23,24, Dominique Arveiler25, Stefan Blankenberg26,27, Jean Ferières28, Frank Kee29, Kari Kualasmaa29, Martina Müller-Nurysyid30,31,32, Giovanni Veronesi33, Jarno Virtamo3, EPIC-CVD Consortium, Philippe Frossard3, Børge Grønne Nordestgaard2, Danish Saleheen4,3,1, John Danesh1,35,20, Adam S. Butterworth1,20, Joanna MM. Howson1

Affiliations

1. Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
2. Department of Clinical Biochemistry Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
3. Centre for Non-Communicable Diseases, Karachi, Pakistan
4. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
5. Department of Health, National Institute for Health and Welfare, Helsinki, Finland
6. Institute of Molecular Medicine FIMM, University of Helsinki, Finland
7. Estonian Genome Center, University of Tartu, Tartu, Estonia
8. University of Glasgow, Glasgow, UK
9. Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
10. Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
11. Development Management and Planning, Pfizer Worldwide Research and Development
12. Pfizer Worldwide Research and Development, Stockholm, Sweden
13. Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, Massachusetts, USA.
14. Merck Research Laboratories, Kenilworth, New Jersey, USA
15. CHDI Management/CHDI Foundation, Princeton, New Jersey, USA
16. The Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
17. Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
18. ICDDR, B; Mohakhali, Dhaka, Bangladesh
19. National Institute of Cardiovascular Diseases, Sher-e-Bangla Nagar, Dhaka, Bangladesh
20. The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
21. University of Lille, Risk Factors and Molecular Determinants of aging-related diseases, Lille, France
22. Inserm, Lille, France
23. Centre Hospitalier Universitaire Lille, Public Health, Lille, France
24. Institute Pasteur de Lille, Lille, France
25. Department of Epidemiology and Public Health, EA 3430, University of Strasbourg, Strasbourg, France
26. Department of General and Interventional Cardiology, University Heart Center Hamburg, Germany
27. University Medical Center Hamburg-Eppendorf, Hamburg, Germany
28. Department of Epidemiology, UMR 1027- INSERM, Toulouse University-CHU Toulouse, Toulouse, France
29. Director, UKCRC Centre of Excellence for Public Health, Queens University, Belfast, Northern Ireland
30. Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
31. Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
32. DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
33. Research Center in Epidemiology and Preventive Medicine, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
34. A full list of members and affiliations appears in the Supplementary Note
35. Wellcome Trust Sanger Institute, Hinxton, UK
Exome BP Consortium

Affiliations
1. Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
2. Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, Rayne Building University College London, London, UK
3. Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
4. National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
5. Department of Health Sciences, University of Leicester, Leicester, UK
6. Department of Biostatistics, University of Liverpool, Liverpool, UK
7. Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
8. Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
9. Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
10. National Institute for Health Research Leicester Biomedical Research Unit in Cardiovascular Disease, Leicester, UK
11. Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
12. Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Health, London, UK
Dentistry, Queen Mary University of London, London, UK
13. Estonian Genome Center, University of Tartu, Tartu, Estonia
14. Wellcome Trust Sanger Institute, Genome Campus, Hinxton, UK
15. Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
16. University of Lund, Department of Clinical Sciences, Malmö, Sweden
17. University of Verona, Department of Medicine, Verona, Italy
18. Department of Haematology, University of Cambridge, Cambridge, UK
20. Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, USA
21. Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
22. Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
23. National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK
24. Section of Investigative Medicine, Imperial College London, London, UK
25. Department of Life Sciences, Brunel University London, London, UK
26. Institute of Biomedicine, Biocenter Oulu, University of Oulu, Oulu, Finland
27. Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
28. Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
29. Department of Obstetrics and Gynaecology, Oulu University Hospital and University of Oulu, Oulu, Finland
30. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
31. Department of Cardiology, Ealing Hospital, Middlesex, UK
32. Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
33. Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
34. Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
35. The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
36. University Medical Center Groningen, University of Groningen, Department of Cardiology, The Netherlands
37. Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA
38. Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, USA
39. Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
40. Farr Institute of Health Informatics Research, Institute of Health Informatics, University College London, London, UK
41. Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
42. Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and
Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
43. Medical Research Council Epidemiology Unit, University of Cambridge School of Clinical Medicine, Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
44. Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
45. Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
46. Department of Psychology, University of Edinburgh, Edinburgh, UK
47. Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
48. Department of Twin Research and Genetic Epidemiology, King’s College London, UK
49. Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
50. Department of Biobank Research, Umeå University, Umeå, Sweden
51. Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
52. Faculty of Medicine, University of Split, Croatia
53. Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
54. Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
55. Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, UK
56. Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
57. Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
58. Institute of Molecular and Cell Biology, Tartu, Estonia
59. Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
60. Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
61. Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
62. Division of Nephrology, Department of Internal Medicine and Medical Specialties, Columbus - Gemelli University Hospital, Catholic University, Rome, Italy
63. Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
64. Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
65. Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
66. Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
67. Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
68. Imperial College Healthcare NHS Trust, London, UK
69. National Heart and Lung Institute, Imperial College London, London, UK
70. Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
71. Department of Epidemiology and Biostatistics, Medical Research Council Public Health England Centre for Environment and Health, School of Public Health, Faculty of Medicine, Imperial College London, St. Mary’s Campus, London, UK
72. Centre for Life Course Epidemiology, Faculty of Medicine, University of Oulu, Oulu, Finland
73. Biocenter Oulu, University of Oulu, Oulu, Finland
74. Unit of Primary Care, Oulu University Hospital, Oulu, Finland
75. Dasman Diabetes Institute, Dasman, Kuwait
76. Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
77. King Abdulaziz University, Jeddah, Saudi Arabia
78. School of Molecular, Genetic and Population Health Sciences, University of Edinburgh, Medical School, Teviot Place, Edinburgh, UK
79. HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
80. St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
81. Department of Medicine, Levanger Hospital, Nord- Trøndelag Health Trust, Levanger, Norway
82. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
83. Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
84. Institute for Molecular Medicine Finland University of Helsinki, Helsinki, Finland
85. Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
86. Department of Public Health, University of Helsinki, Finland
87. International Centre for Circulatory Health, Imperial College London, UK
88. Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
89. Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
90. Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
91. Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
92. Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
93. Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
94. The Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
The Genetics of Type 2 Diabetes (GoT2D) and Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples

(T2D-GENES) Consortia (http://type2diabetesgenetics.org)

Affiliations
1. Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA.
2. Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA.
3. Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.
4. Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
5. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
7. Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK.
8. MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
9. Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
10. Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
11. Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK.
12. School of Computer Science, McGill University, Montreal, Quebec, Canada.
13. McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada.
14. Human Genetics Center, The University of Texas Graduate School of Biomedical Sciences at Houston, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
15. Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA.
16. National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA.
17. Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
18. Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA.
19. Chronic Disease Epidemiology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
20. Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
21. Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany.
22. Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany.
23. DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
24. The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
25. Department of Medicine, Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, USA.
27. Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
28. Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore.
29. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.
31. The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.
32. Departments of Computational Medicine & Bioinformatics and Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.
33. Department of Clinical Sciences, Lund University Diabetes Centre, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden.
34. Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA.
35. Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
36. Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
37. Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore.
38. The Eye Academic Clinical Programme, Duke-NUS Graduate Medical School, Singapore.
39. Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
40. Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
41. Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
42. Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
43. Department of Cardiology, Ealing Hospital NHS Trust, Southall, Middlesex, UK.
44. Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, USA.
45. Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
46. Department of Genetics, University of Pennsylvania - Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
47. Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA.
48. Research, South Texas Veterans Health Care System, San Antonio, Texas, USA.
49. Faculty of Health Sciences, Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland.
50. Kuopio University Hospital, Kuopio, Finland.
51. Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
52. Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
53. Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
54. Centre for Research in Epidemiology and Population Health, Inserm U1018, Villejuif, France.
55. German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
56. Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden.
57. Centre for Chronic Disease Control, New Delhi, India.
58. The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, USA.
59. National Heart and Lung Institute, Cardiovascular Sciences, Hammersmith Campus, Imperial College London, London, UK.
60. Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington, USA.
61. Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
62. Center for Human Genetic Research, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
63. Department of Psychiatry, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
64. Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
65. Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
66. Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
67. Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
68. NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
69. Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea.
70. Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
71. Center for Non-Communicable Diseases, Karachi, Pakistan.
72. Cardiovascular Division, Baylor College of Medicine, Houston, Texas, USA.
73. Department of Pediatrics, University of Texas Health Science Center, San Antonio, Texas, USA.
74. Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore.
75. Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain.
76. CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
77. Unit of Preventive Medicine and Public Health, School of Medicine, University of Murcia, Spain.
78. Cancer Research and Prevention Institute (ISPO), Florence, Italy.
79. Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA.
80. South Texas Diabetes and Obesity Institute, Regional Academic Health Center, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
81. Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA.
82. Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
83. Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, Mississippi, USA.
84. Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore.
85. Division of Human Genetics, Genome Institute of Singapore, A*STAR, Singapore.
86. CNRS-UMR8199, Lille University, Lille Pasteur Institute, Lille, France.
87. Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands.
88. Institute of Health Sciences, University of Oulu, Oulu, Finland.
89. Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
90. Jackson Heart Study, University of Mississippi Medical Center, Jackson, Mississippi, USA.
91. College of Public Services, Jackson State University, Jackson, Mississippi, USA.
92. KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.
93. Department of Pediatrics, Haukeland University Hospital, Bergen, Norway.
94. Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
95. Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden.
96. Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
97. German Center for Diabetes Research (DZD), Neuherberg, Germany.
98. Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.
99. Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark.
100. Department of Internal Medicine and Endocrinology, Vejle Hospital, Vejle, Denmark.
102. Abdominal Center: Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
103. Minerva Foundation Institute for Medical Research, Helsinki, Finland.
104. Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
105. Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, UK.
106. Estonian Genome Center, University of Tartu, Tartu, Estonia.
107. Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
108. Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA.
109. Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
110. Folkhälsan Research Centre, Helsinki, Finland.
111. Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.
112. Steno Diabetes Center, Gentofte, Denmark.
113. Research Centre for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark.
114. Department of Public Health, Institute of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
115. Faculty of Medicine, Aalborg University, Aalborg, Denmark.
116. Department of Primary Health Care, Vaasa Central Hospital, Vaasa, Finland.
117. Diabetes Center, Vaasa Health Care Center, Vaasa, Finland.
118. Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
119. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
120. Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
121. Department of Public Health, Section of General Practice, Aarhus University, Aarhus, Denmark.
122. Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark.
123. Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
124. Department of Clinical Sciences, Hypertension and Cardiovascular Disease, Lund University, Malmö, Sweden.
125. Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK.
126. Department of Clinical Sciences, Diabetes and Cardiovascular Disease, Genetic Epidemiology, Lund University, Malmö, Sweden.
127. Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA.
128. Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA.
129. Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, USA.
130. Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
131. Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
132. High Throughput Genomics, Oxford Genomics Centre, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
133. Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
134. Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany.
135. William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
136. Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia.
137. Department of Clinical Sciences, Medicine, Lund University, Malmö, Sweden.
138. Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
139. Department of Social Services and Health Care, Jakobstad, Finland.
140. Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
141. Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
142. Foundation for Research in Health, Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland.
143. Center for Vascular Prevention, Danube University Krems, Krems, Austria.
144. Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
145. Instituto de Investigacion Sanitaria del Hospital Universario LaPaz (IdiPAZ), University Hospital LaPaz, Autonomous University of Madrid, Madrid, Spain.
147. Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
148. Department of Physiology & Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
149. Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
150. Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
151. Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, California, USA.
152. Functional Genomics Unit, CSIR-Institute of Genomics & Integrative Biology (CSIR-IGIB), New Delhi, India.
153. Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea.
154. CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India.
155. Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
156. Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China.
157. MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.
158. The Biostatistics Center, The George Washington University, Rockville, Maryland, USA.
159. Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
160. Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India.
161. Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK.
162. Life Sciences Institute, National University of Singapore, Singapore.
164. Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
165. The Medical School, Institute of Cellular Medicine, Newcastle University, Newcastle, UK.
166. Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
167. Hannover Unified Biobank, Hannover Medical School, Hanover, Germany.
168. Institute for Human Genetics, Hannover Medical School, Hanover, Germany.
169. Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
170. Data Sciences and Data Engineering, Broad Institute, Cambridge, Massachusetts, USA.
171. Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
172. Imperial College Healthcare NHS Trust, Imperial College London, London, UK.
173. Clinical Research Centre, Centre for Molecular Medicine, Ninewells Hospital and Medical School, Dundee, UK.
174. The Usher Institute to the Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK.
175. University of Exeter Medical School, University of Exeter, Exeter, UK.
176. Department of Natural Science, University of Haifa, Haifa, Israel.
177. Institute of Human Genetics, Technische Universität München, Munich, Germany.
178. Departments of Medicine and Human Genetics, The University of Chicago, Chicago, Illinois, USA.
180. Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
181. Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.
182. Department of Laboratory Medicine & Institute for Human Genetics, University of California, San Francisco, San Francisco, California, USA.
183. Blood Systems Research Institute, San Francisco, California, USA.
184. General Medicine Division, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
185. Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Quebec, Canada.
186. Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
187. Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA.
188. Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
189. Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
190. Department of Biostatistics, University of Liverpool, Liverpool, UK.
191. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

‡ Deceased.
UK Biobank CardioMetabolic Consortium BP working group

Helen R Warren¹², Evangelos Evangelou³⁴, Claudia P Cabrera¹², He Gao³⁵, Ioanna Ntalla¹, Praveen Surendran⁶, Jaspal S Kooner⁷⁹, Bernard Keavney¹⁰¹¹, Maciej Tomaszewski¹⁰¹¹, Nilesh J Samani¹²¹¹, Joanna M M Howson⁶, Martin D Tobin¹³, Patricia B Munroe¹², Louise V Wain¹³, Michael R Barnes¹², Ioanna Tzoulaki³⁵, Mark J Caulfield¹², Paul Elliott³⁵

Affiliations
1 William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
2 National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK.
3 Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK.
4 Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece.
5 MRC-PHE Centre for Environment and Health, Imperial College London, London, UK.
6 Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
7 Department of Cardiology, Ealing Hospital NHS Trust, Southall, Middlesex, UK.
8 National Heart and Lung Institute, Cardiovascular Sciences, Hammersmith Campus, Imperial College London, London, UK.
9 Imperial College Healthcare NHS Trust, London, UK.
10 Division of Medicine, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
11 Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK.
12 NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK.
13 Department of Health Sciences, University of Leicester, Leicester, UK.
<table>
<thead>
<tr>
<th>No.</th>
<th>Gene</th>
<th>Variant Name</th>
<th>Chromosome Position Hs</th>
<th>Position Hs</th>
<th>Direction</th>
<th>Phenotypic Effect</th>
<th>P (Bonferroni corrected)</th>
<th>Gene</th>
<th>P (Bonferroni corrected)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n1035088</td>
<td>PAK2</td>
<td>1</td>
<td>139,423,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>n1038007</td>
<td>PAK2</td>
<td>1</td>
<td>139,423,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>n1038007</td>
<td>PAK2</td>
<td>1</td>
<td>139,423,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>n1077132</td>
<td>NFPA</td>
<td>1</td>
<td>150,423,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>n1636238</td>
<td>NFPA</td>
<td>1</td>
<td>150,423,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>n1636239</td>
<td>NFPA</td>
<td>1</td>
<td>150,423,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>n2062971</td>
<td>TNNC1</td>
<td>1</td>
<td>170,529,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>n2062971</td>
<td>TNNC1</td>
<td>1</td>
<td>170,529,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>n2062971</td>
<td>TNNC1</td>
<td>1</td>
<td>170,529,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>n2062971</td>
<td>TNNC1</td>
<td>1</td>
<td>170,529,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>n2062971</td>
<td>TNNC1</td>
<td>1</td>
<td>170,529,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>n2062971</td>
<td>TNNC1</td>
<td>1</td>
<td>170,529,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>n2062971</td>
<td>TNNC1</td>
<td>1</td>
<td>170,529,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>n2062971</td>
<td>TNNC1</td>
<td>1</td>
<td>170,529,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>n2062971</td>
<td>TNNC1</td>
<td>1</td>
<td>170,529,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>n2062971</td>
<td>TNNC1</td>
<td>1</td>
<td>170,529,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>n2062971</td>
<td>TNNC1</td>
<td>1</td>
<td>170,529,602</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes:
- In yellow are highlighted closest genes for significant results.
- In light green are highlighted to values that pass the significance threshold per specific traits.